Концепции Современного Естествознания

Иерархия Мироздания

9.1. Макромир

Основные этапы развития представлений о Вселенной. ô Релятивистская космология (А. Эйнштейн, А. А. Фридман). Пространство, время, эволюция в стационарных и нестационарных моделях Вселенной. Замкнутая и открытая модель нестационарной Вселенной. ô Концепция расширяющейся Вселенной. Парадокс Олберса. Хаббловское расширение космоса. ô Концепция «Большого взрыва». Стадии «остывания». Предсказание и обнаружение реликтового излучения. ô. Антропный принцип. ô Концепция множественности Вселенных.

Наша планета – одна из планет Солнечной системы. Если Солнце представить в виде бильярдного шара диаметром 7 см, то ближайшая к солнцу планета – Меркурий находится от него в этом масштабе на расстоянии 280 см, Земля – на расстоянии 760 см, Юпитер – на расстоянии 40 м. Размеры Земли в этом масштабе около 0.5 мм. Ближайшая к нам звезда Проксима Центавра находится на расстоянии около 1.3 пк (1 парсек равен 3.26 светового года). В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тысячам км. Но окружающие Солнце звёзды и само Солнце – это ничтожно малая часть гигантского коллектива звёзд и туманностей, называемого «Галактикой». Расстояние от Солнца до ядра нашей галактики – около 30 тыс. световых лет. Вот цифры и масштабы, которыми приходится оперировать, когда мы говорим о макромире. Но Вселенная состоит из огромного количества даже не галактик, а метагалактик, являющихся скоплениями галактик. Собственно, метагалактика – это и есть известная в настоящее время Вселенная. Здесь масштабы и расстояния приобретают характер, совершенно не представимый человеческому воображению.

9.1.1. Основные этапы развития представлений

о Вселенной

Изменение в представлениях о форме и размерах Вселенной на протяжении веков и до наших дней описано в начальных главах многих научно-популярных книг по космологии. Главные темы космологии сейчас – это ядерные превращения в звездах и физика субатомных частиц. А космогония (от слова gonia – угол), являясь в наше время лишь частью более общей науки – космологии, говорит именно о крупномасштабных пространственных характеристиках Вселенной – не об архитектурных и конструктивных деталях мироздания, а как бы со стороны целиком показывает модель, макет этого «здания», в котором мы живем.

Вплоть до эпохи Великих географических открытий Колумба, Магеллана и других, большинство людей считало, что Земля это «круг» (так написано в Библии: Исаия 40:22), до краев которого можно дойти и заглянуть с его края «вниз» – в «бездну». На краю круга Земли небесный свод («Твердь»), подобно шатру, опирается на Землю. По тверди ходят Солнце и Луна. А звезды – это шляпки серебряных гвоздей, вбитых в купол-твердь (слово «звезды» – это «гвезды» – гвозди).

Вокруг шарообразной Земли, согласно модели Птолемея, как матрешки – одна в другой, располагались несколько небес – вращающихся прозрачных хрустальных сфер, к которым были прикреплены: плоский фонарь Луна – к ближайшему от Земли небу, к следующему небу – Меркурий, далее Венера, затем Солнце, к следующим – Марс, Юпитер, Сатурн, и к последнему – то ли седьмому, то ли девятому небу – знакомые нам «серебряные гвозди» – звезды.

Хотя было непонятно, как жители противоположной стороны Земли могут жить там вверх ногами и удерживаться от падения «вниз», в «бездну», но всему этом приходилось верить, ведь в основе модели Птолемея лежали элементарные измерения и расчеты, произведенные в Египте.

Николай Коперник, по прошествии более чем тысячи лет, вдруг обратил внимание на некоторые несуразности в модели Птолемея и предложил свою модель – с Солнцем в центре мира. А Галилей, открывший силы инерции, заявил: если страшно удаленное седьмое небо со звездами делает один оборот за сутки, оно развалится на куски от такой скорости вращения, – вращается не небо, а Земля! И, наконец, Джордано Бруно подытожил: «Значит, нет никакого твердого неба со звездами-гвоздями, звезды – это такие же солнца, как наше. И, значит, нет у Вселенной никакого центра».

Эти идеи подхватывались и развивались. На основе законов динамики Галилея и закона всемирного тяготения Ньютона были вычислены расстояния от Солнца до вращающихся вокруг него планет, а также их размеры и массы. И тем же методом, каким путешественники по Нилу вычислили размер Земного шара, теперь, «путешествуя» на Земном шаре вокруг Солнца, и измеряя из противоположных точек уже измеренной орбиты угол между Солнцем и звездами, вычислили расстояния до ближайших из них. Для большинства же звезд изменения угла (называемые параллаксом) были столь малы, что их нельзя было измерить – так эти звезды оказались далеки.

Так появилась ньютоновская модель, господствовавшая до 20-х годов ХХ века. Согласно ей, Вселенная бесконечна в пространстве и во времени, то есть вечна. Звезды вращаются вокруг центра своей галактики. Группы галактик вращаются вокруг центра своей группы. Скопления групп галактик образуют в свою очередь скопления более крупного порядка и т. д. и т. п. Совсем недавно обнаружили, что скопления галактик образуют в пространстве Вселенной ячеистую структуру наподобие пчелиных сот. Но и это не меняет того факта, что по всем направлениям от нас на расстоянии до 12 миллиардов световых лет, которого достигают современные телескопы, все везде одно и то же. И нет никаких оснований думать, что за пределами видимости есть что-то другое.

На границах видимости обнаружены гигантские светящиеся скопления материи, названные квазарами, которых нет вблизи нас. Это можно объяснить тем, что мы видим приграничные области такими, какими были они – и, очевидно, вся наша Вселенная – 10-12 млрд. лет назад. Изменчивость Вселенной во времени подрывает идею ее вечности, а значит, и всю ньютоновскую модель.

9.1.2. Релятивистская космология

(А. Эйнштейн, А. А. Фридман)

В начале ХХ века Эйнштейн в своей специальной теории относительности (СТО) – рассматривавшей только равномерное движение – сумел внести в механику Ньютона изменения, связанные с постоянством скорости света – как предельной скорости движения вообще. Последствия этого и других изменений были далеко идущими. Из общей теории относительности (ОТО) Эйнштейна, рассматривавшей уже и ускоренное движение, и силы тяготения, следовало, что трехмерное пространство Вселенной не бесконечно – как бесконечны, например, одномерная прямая линия и двумерная плоскость – а конечно по объему и замкнуто само на себя, как конечны и замкнуты одномерная линия окружности и двумерная поверхность шара – сфера.

Но одномерная линия – окружность может быть искривлена и замкнута только потому, что у плоскости, на которой она находится – два измерения. Двумерная поверхность – сфера может быть замкнута только потому, что в пространстве, где она находится – три измерения. А трехмерное пространство Вселенной может иметь свойства искривленности и быть замкнутым, потому что наш мир на самом деле четырехмерен, и четвертое его измерение – это время. Оно фигурировало в качестве четвертого измерения уже в ранней – «специальной» теории относительности.

Общая теория относительности, созданная Эйнштейном в 1916 г., просто и естественно учитывает механизм «Большого взрыва». В этой теории присутствие вещества приводит к изменению геометрии пространства на космическом уровне. До сих пор из-за нехватки наблюдательных данных эти изменения не могут быть оценены в полной мере; в частности, пока нет достаточно точных данных о полном количестве вещества во Вселенной.

А. А. Фридман обнаружил еще одно следствие из теории Эйнштейна: замкнутое трехмерное пространство Вселенной не может быть стационарным, а должно расширяться, раздуваться – как растягивается замкнутая двумерная поверхность воздушного детского шарика при его надувании. Расширяется ли наша Вселенная на самом деле и почему расширяется – доказать и объяснить это Фридман предоставил другим. Он говорил, что его дело – решать уравнения, а разбираться в физическом смысле решений должны другие специалисты – физики, астрономы.

Согласно модели (называемой моделью Фридмана), которую предпочитал Эйнштейн, Вселенная содержит достаточно вещества, чтобы быть искривленной настолько, что она замыкается на саму себя, как, например, воздушный шарик. Если надувать такой шарик, то любая картинка, нарисованная на его поверхности, увеличивается в размере, сохраняя при этом те же пропорции между своими частями. Каким-нибудь муравьям, живущим в таком мире, покажется, что они друг от друга удаляются, но ни один из них не будет иметь достаточного основания считать себя центром Вселенной. Согласно представлениям этой модели, расширение Вселенной должно прекратиться примерно через 40 млрд. лет, после чего должно начаться сжатие, в результате чего еще через 100 млрд. лет Вселенная снова окажется в состоянии большой плотности.

Основная трудность, которая встречается при объяснении модели Фридмана, возникает при определении того, что собой представляет внутренний объем воздушного шарика. В нашем мире можно передвигаться вдоль трех направлений: север – юг, запад – восток, вверх – вниз; в мире, который расположен на поверхности воздушного шарика, остаются только первые два. Третье направление (измерение) используется здесь для обозначения кривизны и носит, таким образом, лишь методический характер. Поэтому, хотя наша Вселенная также имеет кривизну, но необходимость введения каких-либо измерений, кроме привычных трех, существует лишь с методической или математической точек зрения; как учили Гаусс и Риман, нет смысла покидать наш мир, чтобы познавать его свойства.

Поскольку гравитационные взаимодействия являются доминирующими на мегауровне организации материи, космологические модели Вселенной должны строиться в соответствии с требованиями теории относительности на основе реально наблюдаемых астрофизических явлений, таких как:

  1. Однородность и изотропность космического пространства.
  2. Конечная интенсивность светового потока, приходящего из космоса.
  3. Красное смещение в спектрах излучения далеких звезд.
  4. Существование реликтового излучения (однородного и изотропного фона электромагнитных волн, соответствующего температуре около 3К).

Конечное количество света, приходящего от звездного неба, заставляет отвергнуть классические представления о бесконечном космическом пространстве, однородно заполненном звездами. Предпринимаемые в рамках классической концепции попытки построения космологических моделей с неоднородным распределением звезд в пространстве, находятся в противоречии с астрономическими наблюдениями (неоднородность в концентрации звезд наблюдается только на «относительно малых» космических масштабах вплоть до межгалактических скоплений).

А. Эйнштейном была предложена модель Вселенной, в которой локальные искривления пространства-времени гравитирующими массами приводят к глобальному искривлению, делающему Вселенную замкнутой по пространственным координатам. В этой цилиндрической модели Эйнштейна временная координата не искривляется (время равномерно течет от прошлого к будущему). Впоследствии цилиндрическая модель была усовершенствована голландским астрофизиком Виллем де Ситтером, предположившим на основании наблюдаемого красного смещения, что время в удаленных частях Вселенной течет замедленно (искривление по временной координате) – модель замкнутой гиперсферы.

Обе эти стационарные модели Вселенной имеют два недостатка: необходимость предположить существование дополнительных взаимодействий, препятствующих сжатию Вселенной под действием гравитирующих масс и проблему «утилизации» света, испущенного звездами в предшествующие моменты времени в замкнутое пространство.

На сегодняшний день наиболее популярна предложенная Фридманом модель расширяющейся Вселенной (красное смещение и конечная светимость неба объясняются эффектом Доплера, нет необходимости во введении компенсирующих гравитацию взаимодействий), глобально искривленной из-за наличия гравитирующих масс. Обсуждаются две ее модификации:

  1. Замкнутая модель (геометрический аналог – расширяющаяся гиперсфера) предсказывает постепенное замедление расширения вследствие торможения гравитационными силами с последующим переходом к сжатию.
  2. Открытая модель (геометрический аналог – «седло») замедляющееся расширение, происходящее бесконечно долго.

В настоящее время предпочтение отдается открытой модели, поскольку оценки средней плотности вещества во Вселенной, сделанные на основе наблюдаемой концентрации звезд, показывают, что гравитационные силы не способны остановить происходящее с наблюдаемой скоростью разбегание. Оценки могут существенно измениться в пользу закрытой модели при наличии в космосе скрытых масс несветящегося вещества (например, за счет ненулевой массы покоя нейтрино).

Уравнения ОТО оказались весьма «гибкими» и допускают наличие большого числа космологических моделей Вселенной и сценариев их временного развития.

9.1.3. Концепция расширяющейся Вселенной

Самый серьезный удар по представлению о стационарности Вселенной был нанесен результатами измерений скоростей удаления галактик, полученными Хабблом. В 1929 г. после огромной работы по получению и изучению спектров галактик, а также по определению различными методами расстояний до этих галактик, Э. Хаббл надежно установил факт расширения Вселенной. Он показал, что в «разбегании» галактик существует замечательная закономерность. Чем дальше от нас находится галактика, тем с большей скоростью она удаляется, то есть тем больше её красное смещение. Причем закон имеет предельно простую линейную форму: v=HR, где v – скорость галактики, R – расстояние до нее, а Н – коэффициент пропорциональности, называемый постоянной Хаббла.

Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные «острова» – галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют «правильную» форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую «Галактику», которая включает в себя в качестве незначительной периферийной звезды и наше Солнце. В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м.

Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: «галактики-солдаты» по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями. Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас во мнении, что как закон, так и сам принцип действительно справедливы.

Итак, после получения красных смещений галактики предстали перед нами удаляющимися от нашей Галактики, причем скорость удаления растет с увеличением расстояния. Означает ли это, что наша галактика является центром, из которого происходит это расширение? Вовсе нет. Наблюдатель в любой галактике увидел бы точно такую же картину: все галактики, несвязанные гравитационно с родной галактикой наблюдателя, имели бы красные смещения, пропорциональные расстоянию между галактиками. Действительно, увеличивается расстояние между всеми галактиками. Пространство «раздувается».

Расширение Вселенной можно проиллюстрировать замечательным примером. Представьте себе двумерных существ, двумериков, живущих на поверхности воздушного шарика. Нарисуем на нем галактики и поселим в них этих двумериков. Пусть они могут наблюдать в свои телескопы соседние галактики. Начнем теперь надувать шарик. Каждый двумерик-наблюдатель в своей галактике будет видеть, что другие галактики удаляются от него. Сам же центр расширения на поверхности шарика, то есть в Метагалактике двумериков, отсутствует.

Как уже говорилось, чем дальше находятся участки Вселенной, тем быстрее они от нас удаляются; галактики представляются нам такими, какими они были в далеком прошлом, поскольку свету, идущему от них, требуется время, чтобы до нас дойти. Таким образом, большие телескопы совершают, кроме всего прочего, путешествие в прошлое. Наблюдая все более далекие объекты, мы видим, как они разлетаются со скоростями, которые все ближе и ближе к непреодолимому барьеру – скорости света. Существуют квазары – объекты, крайне яркие и видимые на громадных расстояниях, – которые удаляются со скоростями в 285000 км/с, что лишь немного меньше скорости света, равной 300000 км/с.

Если бы мы могли увидеть какие-нибудь объекты, «приставленные к стенке скорости света», то они бы выглядели так же, как у истоков Вселенной. Но не все объекты, содержащиеся во Вселенной, можно будет когда-нибудь увидеть; свет от объектов, расположенных дальше определенного расстояния, так и не успевает дойти до нас, и они навсегда остаются скрытыми от наших взоров, так же как слишком далекое здание на поверхности Земли скрыто за горизонтом.

Но, если все галактики удаляются от нашей, не означает ли это, что Земля – центр Вселенной? Ответ по-прежнему отрицательный. Расстояния между любыми галактиками увеличиваются со скоростями, пропорциональными самим расстояниям, и человек, оказавшийся случайно в пределах другой галактики, обнаружит справедливость того же закона Хаббла. При этом его горизонт окажется смещенным, и он сможет увидеть то, что скрыто от нас, в то время как другие объекты, видимые с Земли, будут скрыты от него.

Согласно общей теории относительности Эйнштейна, присутствие вещества в пространстве приводит к искривлению последнего. При наличии достаточного количества вещества можно построить модель искривленного пространства, напоминающего искривленную поверхность Земли.

Передвигаясь на Земле в одном направлении, мы, в конце концов, пройдя 40000 км, должны вернуться в исходную точку. В искривленной Вселенной случится то же самое, но спустя 40 млрд. световых лет; кроме того, «роза ветров» не ограничивается четырьмя частями света, а включает направления также вверх – вниз, или, точнее, зенит – надир. Итак, Вселенная напоминает надувной шарик, на котором нарисованы галактики и, как на глобусе, нанесены параллели и меридианы для определения местоположения точек; но в случае Вселенной для определения положения галактик необходимо использовать не два, а три измерения. А можно ли взглянуть внутрь надувного шарика? Для этого пришлось бы выйти в четвертое измерение, чего никто делать не умеет и хотя можно использовать и шесть измерений, все мы, в конце концов, сходимся на том, что речь здесь идет лишь о некой игре слов, а всю физическую сторону этого вопроса вполне можно осознать, будучи, так сказать, нарисованными на поверхности такого воздушного шарика.

Расширение Вселенной напоминает процесс надувания этого шарика: взаимное расположение различных объектов на его поверхности не меняется; на шарике нет выделенных точек; площадь, на которой были выстроены солдаты, теперь представляет всю Вселенную; площадь эта весьма странная: выходим через калитку на север, а, возвращаясь, обнаруживаем, что появляемся на площади с южной стороны и т. д.

Рентгеновские лучи равномерно со всех сторон облучают Землю. Наблюдения показали, что они возникают всякий раз, как пыль, газ и звёзды, разрушенные гравитационными силами, поглощаются чёрной дырой. Чёрные дыры превосходят по массе все известные в мироздании тела. Из окружающей её окрестности чёрная дыра высасывает гигантские количества материи: в каждую минуту проглатывается масса, равная нашему земному шару. Столкновение частиц при этом рождает рентгеновское излучение. Почти все рентгеновские лучи приходят из далёкого прошлого, когда шло энергичное образование звёзд. Можно полагать, что чёрные дыры появились вскоре после первоначального взрыва, породившего нашу Вселенную, но до того как возникли первые звёзды. Вероятно, что сверхмассивные чёрные дыры стали в последующем центрами галактик. Уже определено более 30 галактик, заключающих в себе эти образования[i].

Мир галактик не только велик, но и разнообразен. Они резко различаются размерами, внешним видом и числом входящих в них звёзд, светимостью. Основоположником внегалактической астрономии, которая занимается этими вопросами, по праву считается американский астроном Эдвин Хаббл (1889-1953). Он доказал, что многие туманности на самом деле не что иное, как галактики, состоящие из множества звёзд. Он изучил свыше тысячи галактик и определил расстояние до некоторых из них. Среди галактик выделил три основных типа: спиральные, эллиптические и неправильные.

Более половины галактик – спиральные. В центре их находится яркое ядро (большое тесное скопление звёзд). Из ядра выходят спиральные, закручивающиеся вокруг него ветви, состоящие из молодых звёзд и облаков нейтрального газа. Все ветви лежат в плоскости вращения галактики. Поэтому она имеет вид сплющенного диска.

Эллиптические галактики на фотографиях выглядят как эллипсы с разной степенью сжатия. Примерно четверть из наиболее ярких галактик относится к их числу.

Неправильные галактики отличаются хаотической клочковатой структурой и не имеют какой-либо определённой формы. Хотя неправильные галактики самый немногочисленный класс галактик, исследование их очень важно. Астрофизика постоянно обнаруживает в них что-нибудь интересное: вспышка сверхновой в Большом Магеллановом облаке, открытия в туманности Тарантул[ii].

9.1.4. Концепция «Большого Взрыва»

Прокручивая ретроспективно киноленту о жизни Вселенной, мы могли бы увидеть, что было время, а именно около 25 млрд. лет тому назад, когда все галактики были собраны вместе в одной точке. Разумеется, к такой оценке нужно относиться с осторожностью и представлять, что она справедлива только по порядку величины. Во-первых, гравитационное притяжение непрерывно замедляет движение галактик; во-вторых, почти наверняка галактики сами образовались лишь примерно через миллиард лет после начала расширения. Но остается фактом, что Вселенная когда-то начинала свое развитие, будучи намного более плотной и, занимая область намного меньшую, чем в настоящее время; ее эволюцию можно сравнить разве что с гигантским взрывом глобального масштаба – с так называемым «Большим взрывом». Примечательно, что указанный масштаб времени, в общем, согласуется с результатами, полученными при исследовании эволюции звезд.

Наличие разбегания галактик в настоящее время требует предположения о том, что в прошлом вещество Вселенной было более плотным. Экстраполяция наблюдаемых скоростей на значительно более ранние периоды позволяет оценить время, когда это расширение началось в результате Большого Взрыва – около 25 млрд. лет назад. Известные на сегодняшний день законы физики позволяют воспроизвести достаточно правдоподобный сценарий расширения, начиная с нескольких тысячных секунды после Большого Взрыва (что происходило до этого, напр. предшествовало ли ему сжатие предыдущего цикла, на современном этапе развития естествознания не обсуждается, поскольку не может быть хотя бы косвенно проверено экспериментом).

Теория горячей Вселенной была первоначально разработана Г. А. Гамовым и др. для объяснения наблюдаемого химического состава Вселенной. Ведь первоначально все вещество представляло собой в основном водородную плазму, а затем, в эпоху так называемого нуклеосинтеза, образовались ядра более тяжелых химических элементов – различных изотопов гелия и лития. К ядрам водорода, которые представляют собой одиночные протоны, примешались также более сложные ядра дейтерия – тяжелого изотопа водорода. Так в нашем мире появилось разнообразие химических элементов. Однако пройдет еще немало времени, прежде чем образуются первые звезды, в которых в процессе эволюции родится все многообразие химических элементов, наблюдаемых сегодня[iii].

Какой же была Вселенная в момент своего рождения? Наш вопрос имеет смысл, только если он относится к мгновению, следующему непосредственно за началом, то есть к моменту времени, когда применение физических законов становится уже разумным. Спустя всего одну сотую секунды после начала космос занимал гораздо меньший объем, чем теперь, и был заполнен сжатым веществом при температуре в миллиарды градусов с плотностью в триллионы раз выше, чем плотность воды. В этих условиях не могли существовать ни ядра, ни тем более атомы, которые были бы разрушены бурным тепловым движением. Расширение Вселенной происходило с очень большой скоростью. Через несколько минут расширение Вселенной и ее охлаждение достигли такой степени, что стало возможным образование атомных ядер. Спустя еще миллион лет температура упала ниже трех тысяч градусов, и началось образование атомов. Бросив взгляд вокруг себя в ту эпоху, мы увидели бы пространство, заполненное облаком из раскаленных газов и ослепляющим светом. Еще через миллиард лет началось образование галактик, звезд и стабильного вещества в современном виде.

Свет, излученный первоначальным газовым облаком, все еще бродит во Вселенной; претерпев сильные изменения при расширении Хаббла, он сейчас заметен только в виде микроволнового фона (так называемого «реликтового излучения»). Это самое древнее из всех известных свидетельств истории нашей Вселенной. Оно было обнаружено двумя астрофизиками из лаборатории фирмы «Белл телефон» Пензиасом и Уилсоном, удостоенными за свое открытие Нобелевской премии в 1978 г.

Нуклеосинтез стал еще одним шагом к «нашему», привычному миру. Это произошло, когда Вселенной было «уже» 100 секунд. К тому времени наш мир продолжал расширяться и остывать. Вещество существовало в форме плазмы, когда электроны отделены от ядер атомов. Привычный для нас вид вещество во Вселенной приняло в так называемую эпоху рекомбинации. Эта эпоха ознаменовалась замечательным событием – температура упала ниже 10000 градусов и плазма превратилась в обычный, нейтральный газ. При этом вещество освободилось от «бремени» излучения, и стало развиваться уже по-своему. Дело в том, что когда вещество непрерывно взаимодействует с излучением, ионизируется им, то не образуются конденсации вещества и сложные структуры в нем. Будучи «свободным», вещество начинает структурироваться, «скучиваться». Эти сгущения служат основой той сложной структуры, которую мы сейчас наблюдаем.

Излучение, также освободившееся от вещества, получило возможность практически беспрепятственно двигаться по всей Вселенной. Благодаря этому мы сейчас можем поймать древние кванты электромагнитного излучения и в принципе пронаблюдать все события в развивающейся Вселенной после эпохи рекомбинации. Но как же тогда образовались более тяжелые элементы в природе, в том числе и те, из которых состоит наша Земля и человеческое тело? Более тяжелые элементы образовались в недрах звезд. Элементы легче железа образовались в результате термоядерного синтеза в звездах, а тяжелее железа – в результате вспышек сверхновых.

В первые моменты температура Вселенной была столь высока, что в ней могли существовать лишь самые легкие элементарные частицы: фотоны, нейтрино и т.д. Быстрое расширение горячего сжатого «газа» вело к его охлаждению. Уже на первых секундах расширения стало возможным образование электронов и протонов, существующих в виде горячей плазмы и сильно взаимодействующих друг с другом и излучением, на долю которого приходилась основная доля энергии во Вселенной. Таким образом, на ранней стадии, длящейся около одного млн. лет, во Вселенной преобладали электромагнитные и ядерные взаимодействия.

Спустя указанный срок температура упала до величины, допускающей рекомбинацию электронов с протонами в нейтральные атомы водорода. С этого момента взаимодействие излучения с веществом практически прекратилось, доминирующая роль перешла к гравитации. Возникшее на стадии горячей Вселенной и постепенно остывающее в результате ее расширения излучение дошло до нас в виде реликтового фона.

На последующей стадии «холодной» Вселенной на фоне продолжающегося расширения и остывания вещества стали возникать гравитационные неустойчивости: за счет флуктуаций плотности водородного газа стали возникать зоны его уплотнения, притягивающие к себе газ из соседних областей и еще больше усиливающие собственное гравитационное поле. Самоорганизация вещества во Вселенной (сложная неравновесная система, описываемая нелинейными уравнениями гравитации) в конечном итоге привела к возникновению крупномасштабной квазиупорядоченной межгалактической ячеистой структуры, а ее дальнейшая фрагментация дала начало будущим галактикам и звездам. Анализ деталей этого процесса возможен на основании весьма сложных уравнений гидрогазодинамики – теории нестационарного движения вещества и до сих пор удовлетворительно не разработан. Достаточно ясно, что в результате гравитационного сжатия выделяющаяся энергия в конечном итоге приводила к вторичному разогреву водородного топлива до температур, достаточных для начала термоядерных реакций водородного цикла.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла. Температура звезды определяется ее массой и степенью гравитационного сжатия, которому противостоит главным образом световое давление. Звезда образует относительно устойчивую колебательную систему, ее периодические слабые сжатия и расширения определяют звездные циклы. По мере выгорания водорода в центре звезды, ее гелиевое ядро остывает, а зона протекания реакции синтеза перемещается на периферию. Звезда «разбухает», поглощая планеты ее системы, и остывает, превращаясь в красного гиганта.

Дальнейшее сжатие гелиевого ядра поднимает его температуру до зажигания реакций гелиевого цикла. Водородная оболочка постепенно рассеивается, образуя звездную туманность, а сильно сжатое ядро раскаляется до высоких температур, соответствующих свечению бело-голубым светом («белый карлик»). По мере выгорания топлива звезда угасает, превращаясь в устойчивого «черного карлика» – характерный итог эволюции большинства звезд с массой порядка солнечной.

Более массивные звезды на этапе превращения в белого карлика теряют водородную оболочку в результате мощного взрыва, сопровождающегося многократным увеличением светимости («сверхновые звезды»). После выгорания их ядер сил давления в плазме оказывается недостаточно для компенсации гравитационных сил. В результате уплотнения вещества электроны «вдавливаются» в протоны с образованием нейтральных частиц. Возникает нейтронная звезда – компактное (радиус несколько километров) и массивное образование, вращающееся с фантастически высокой для космических объектов скоростью: около одного оборота в секунду. Вращающееся вместе со звездой его магнитное поле посылает в пространство узконаправленный луч электромагнитного (часто- рентгеновского) излучения, действуя подобно маяку. Источники мощного периодического излучения, открытые в радиоастрономии, получили название пульсаров.

Звезды с массой, превосходящей массу Солнца более чем в два раза, обладают столь сильным гравитационным полем, что на стадии нейтронной звезды их сжатие не останавливается. В результате дальнейшего неограниченного сжатия – гравитационного коллапса звезда уменьшается до таких размеров, что скорость, необходимая для ухода тела с ее поверхности на бесконечность превышает предельную (скорость света). При этом ни одно тело (даже свет) не может покинуть непрерывно сжимающуюся звезду, представляющую собой «черную дыру», размерами всего несколько километров. Существование черных дыр допускают уравнения общей теории относительности. В области черной дыры пространство-время сильно деформировано.

Астрономические наблюдения чёрных дыр затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что её роль играет черная дыра или не излучающая нейтронная звезда.

Помимо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы – квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет.

9.1.5. Антропный принцип[iv]

В 1973 г., на съезде учёных, посвящённом пятисотлетию со дня рождения Н. Коперника, английский физик Б. Картер выдвинул так называемый антропный принцип (АП), декларирующий наличие взаимосвязи между параметрами Вселенной и существованием в ней разума. Формальный толчок началу дискуссии о месте человека во Вселенной дало обсуждение проблемы совпадения больших чисел – странной числовой взаимосвязи параметров микромира (постоянной Планка, заряда электрона, размера нуклона) и глобальных характеристик Метагалактики (ее массы, размера, времени существования). Эта проблема поставила вопрос: насколько случайны параметры нашего мира, насколько они взаимосвязаны между собой, и что произойдет при их незначительном изменении? Анализ возможного варьирования основных физических параметров показал, что даже незначительное их изменение приводит к невозможности существования нашей Метагалактики в наблюдаемой форме и не совместимо с появлением в ней жизни и разума.

Взаимосвязь между параметрами Вселенной и появлением в ней разума была выражена Картером в двух формулировках – сильной и слабой. «Слабый АП» лишь констатирует, что имеющееся во Вселенной условия не противоречат существованию человека: «Наше положение во Вселенной с необходимостью является привилегированным в том смысле, что оно должно быть совместимо с нашим существованием как наблюдателей».

«Сильный АП» выдвигает более жесткую взаимосвязь параметров Вселенной с возможностью и необходимостью появления в ней разума: «Вселенная должна быть такой, чтобы в ней на некотором этапе эволюции допускалось существование наблюдателей».

Английский физик С. Хоукинг в популярной книге «Краткая история времени» определяет «Слабый АП» следующим образом: «Слабый Антропный Принцип утверждает, что во Вселенной, которая велика или бесконечна, условия для развития разумной жизни возникнут только в определённых районах, ограниченных во времени и пространстве. Поэтому разумные существа в этих районах не должны удивляться, что в их части Вселенной условия как раз те, которые необходимы для их существования».

О «Сильном АП» он говорит следующее: «В соответствии с этой теорией, имеются либо многие различные вселенные, либо различные районы в пределах одной Вселенной, каждый со своей начальной конфигурацией и со своим собственным набором законов науки. В большинстве этих районов условия не подходящие для развития сложных организмов; только в немногих из них, подобных нашей Вселенной, разумная жизнь разовьётся и задаст вопрос: почему Вселенная такова, какова она есть? Ответ прост: если бы она была иной, мы не были бы здесь».

Можно сформулировать два крайних предположения обосновывающих АП:

  1. Разум в нашей Метагалактике явление абсолютно случайное, которое стало возможным лишь благодаря маловероятному, но реализованному совпадению многих независимых физических параметров
  2. Наличие биологической и социальной форм движения закономерное следствие развития Вселенной, а все ее физические характеристики взаимосвязаны и взаимообусловлены таким образом, что с необходимостью вызывают появление разума.

Для понимания Антропного принципа важно уяснить одно существенное, обстоятельство: он был выдвинут вне всякой связи с проблемой существования разумной жизни или исследованием места человека во Вселенной. Космологов и физиков-теоретиков, занимающихся космологией, интересовали совсем другие проблемы: почему тот или иной космологический параметр имеет вполне определенное значение? Почему мир устроен так, а не иначе? Почему Вселенная такова, как мы ее наблюдаем? Подход, который использовался при решении этой проблемы, соответствует обычной, принятой в физике методологии. Если нас интересуют значения каких-то параметров, попробуем проварьировать эти значения и посмотрим, как изменятся при этом условия в изучаемой системе (в данном случае во Вселенной). Этот естественный и вполне разумный подход неожиданно привел к установлению связи между существованием наблюдателя и наблюдаемыми свойствами Вселенной. Проиллюстрируем это несколькими примерами.

Размерность физического пространства «N». Это одна из фундаментальных важнейших характеристик нашего мира. Почему пространство имеет три измерения? Очевидно, при «N<3» человек существовать не может. Возможно, что существуют двумерные и одномерные миры. Мы можем мысленно изучать их свойства, но наблюдать эти миры мы не можем. Остаются миры, в которых «N >= 3». Каковы физические законы в этих мирах? В нашем трехмерном мире для дальнодействующих взаимодействий (к которым относятся гравитационное и электромагнитное взаимодействия) сила взаимодействия двух точечных источников убывает обратно пропорционально квадрату расстояния между ними – закон всемирного тяготения и закон Кулона. Выражение для силы можно записать в виде «F3 = а3/Р3-1», где а3 – коэффициент пропорциональности, зависящий от произведения взаимодействующих зарядов (или масс). Индекс 3 указывает, что формула справедлива для трехмерного пространства. Эту формулу легко обобщить на случай N – мерного пространства:

«FN = аN/RN-1». Анализ характера движения под действием такой силы (П. Эренфест, 1917 г.) показал, что при «N >= 4» в задаче двух тел не существуют замкнутые устойчивые орбиты: планета либо падает на центральное тело, либо уходит в бесконечность. То есть, в таких мирах не существует аналогов планетных систем и атомов, а, следовательно, в них невозможна жизнь. Таким образом, размерность пространства оказывается жизненно важным фактором. Единственное значение параметра «N», которое совместимо с существованием жизни во Вселенной, «N = 3». Это, конечно, не объясняет, почему наш мир трехмерный, но это указывает на то, почему мы наблюдаем именно такой мир: в другом мире мы просто не могли бы существовать.

Это относится не только к человеку, но к любому разумному существу (наблюдателю), представляющему собой некую сложную структуру, построенную из атомов. Здесь даже не обязательно ограничиваться рассмотрением водно-углеродной формы жизни.

Средняя плотность вещества во Вселенной. В космологии существует понятие критической плотности «pc». Если средняя плотность вещества во Вселенной «р<pc», то кривизна пространства отрицательна, Вселенная неограниченно расширяется. При «р>pc» кривизна положительна, мир замкнут, расширение сменяется сжатием. При «р=pc» кривизна пространства равна нулю – геометрия мира евклидова. Критическая плотность pc = 1029. Средняя плотность «светящегося» вещества, полученная из наблюдений, меньше pc, но по порядку величины близка к ней. Если учесть возможно существующую «скрытую массу» во Вселенной, то средняя плотность р должна быть еще ближе к критической; может быть она даже превзойдет ее, но останется вблизи pc. Итак, во Вселенной удовлетворяется соотношение «р ~= pc». Такое совпадение удивительно, так как плотность, вообще говоря, может иметь произвольное значение.

Средняя плотность связана со скоростью расширения Вселенной. Если «р<<pc», Вселенная расширяется слишком быстро, и в ней не могут образоваться гравитационно-связанные системы – галактики и звезды, которые необходимы для жизни. Если «р>>pc», гравитационно-связанные системы легко возникают, но время жизни такой Вселенной (длительность цикла расширение-сжатие) мало, много меньше, чем требуется для возникновения жизни. Таким образом, если бы условие «р~=pc» не выполнялось, то жизнь в такой Вселенной была бы невозможна. Следовательно, средняя плотность вещества во Вселенной тоже оказывается жизненно-важным фактором, а условие «р~=pc» – необходимым для существования жизни во Вселенной. Это, не объясняет, почему в нашей Вселенной выполняется данное соотношение, но позволяет предсказать его для любой обитаемой Вселенной. Аналогичные выводы можно сделать в отношении анизотропии Вселенной.

Совпадение больших чисел. Существует несколько удивительных соотношений между константами, характеризующими Вселенную. Они даже получили название «совпадение больших чисел». Одно из них связывает постоянную Хаббла «Н» с атомными константами. Возникает вопрос: как объяснить это совпадение? Является ли оно чисто случайным или его можно предсказать теоретически? Оказывается это возможно, но только для обитаемой Вселенной.

Б. Картер сформулировал это положение в следующем виде: можно теоретически (до наблюдений) предсказать «совпадения больших чисел», если использовать некий Антропологический принцип: то, что мы можем наблюдать, должно быть ограничено условиями, необходимыми для нашего существования. По существу, в предыдущих примерах, обращаясь к обитаемой Вселенной, мы неявно использовали этот принцип.

Посмотрим, как он работает в рассматриваемом примере. В соответствии с антропным принципом, в обитаемой Вселенной должно выполняться соотношение Т0 ~ = ТS где Т0 – современный возраст Вселенной (т.е. возраст в момент существования наблюдателя), а ТS – время жизни звезд. Действительно, если T0 <<ТS, то к моменту Т0 в недрах звезд не успеют образоваться тяжелые элементы, необходимые для жизни. Если T0>>ТS, , то к этому моменту все ядерное горючее уже выгорит, ядерные реакции в недрах звезд прекратятся, и они перестанут поставлять энергию, необходимую для жизни. Следовательно, условие T0 ~ = ТS является необходимым для существования жизни. И поэтому можно предсказать, что оно должно выполняться в нашей Вселенной.

Очевидно структура Вселенной крайне чувствительна к численным значениям этих постоянных: она сохраняется только в очень узких пределах их изменения. Достаточно значению какой-либо из постоянных выйти за эти узкие пределы, как структура Вселенной претерпевает радикальные изменения: в ней становится невозможным существование одного или нескольких основных структурных элементов – атомных ядер, самих атомов, звезд или галактик. Во всех этих случаях во Вселенной не может существовать и жизнь. Таким образом, значения фундаментальных констант определяют условия, необходимые для существования во Вселенной жизни (и наблюдателя). Это довольно неожиданный результат.

Он означает, что в любой обитаемой Вселенной (мыслимой или реально существующей) фундаментальные физические константы не могут иметь иных значений, кроме тех, которые известны нам из опыта. Следовательно, используя Антропный принцип, мы можем приближенно предсказать значения этих констант, ничего не зная о результатах их экспериментального определения.

Эти и подобные им примеры исчерпывают физическое содержание АП. Все остальное относится к его интерпретации. Попытка перейти от предсказания к объяснению привела к развитию концепции «ансамбля вселенных». Ансамбль характеризуется всеми мыслимыми комбинациями начальных условий и фундаментальных констант. В каждой вселенной этого ансамбля реализуется определенный набор параметров. Существование наблюдателя возможно не при всех, а только при некоторых ограниченных комбинациях параметров, которые выделяют в ансамбле миров познаваемое подмножество. Очевидно, наша Вселенная принадлежит к этому подмножеству. Можно назвать его также подмножеством обитаемых вселенных, а каждую вселенную этого подмножества – обитаемой.

Ансамбль вселенных может быть мыслимым («логически возможные миры» Г. Лейбница) или реально существующим. При этом миры могут реализоваться последовательно или существовать параллельно. Ансамбль вселенных позволяет объяснить, почему мы наблюдаем то или иное свойство Вселенной. Если это свойство является необходимым для жизни, ответ может быть таким: данное свойство относится к числу типичных свойств обитаемых вселенных, наша Вселенная обитаема, поэтому ей также присуще это свойство.

9.2. Мезомир

Эволюция планеты Земля. ô Экологическая структура мезомира. Иерархичность его элементов. ô Информационные свойства и инвариантная структура мезомира. «Информационный след». Информационные потоки. Сигнальные системы человека и животных.

Человечество, как взаимосвязанная мозаика из сложных суперсистем различных культур, подчинено общим законам функционирования систем, и особенно живых, биологических систем. В обыденной реальности человек имеет дело с масштабами, которые, исходя из принятой нами градации, можно определить как средние. Мезомир – это мир средних величин. Эти величины не настолько малы, чтобы подчинять вещи непосредственно квантовым нормам поведения, но и не настолько велики, чтобы подчинять их только гравитационным законам. В общем, это мир, в котором масштабы в основном определяются действием классических механических и электромагнитных законов. Познавательная стратегия на этом уровне определяется не только и, может быть не столько способностью создавать рациональные объясняющие положения, сколько сформировавшимися в ходе биологической эволюции воспринимающими системами.

9.2.1. Эволюция планеты Земля

Сначала воды разделились на сушу и море. Потом стал свет, появились растения, небесные светила, пресмыкающиеся и, наконец, человек – таков приблизительный план сотворения Богом планеты Земля.

Как это не покажется странным, но с некоторыми оговорками эта модель вполне отвечает современным представлениям ученых о развитии и Солнечной системы и нашей планеты. Конечно, научная версия сотворения Земли предполагает не семь, а как минимум тридцать пять миллиардов дней (или сто миллионов лет).

Как «слепить» Землю за сто миллионов лет? Первые десять миллиардов лет жизни нашей Галактики, казалось бы, не предвещали появления Солнечной системы. Межзвездное пространство было заполнено веществом, которое время от времени то собиралось, то рассеивалось следующими поколениями звезд. Но около четырех с половиной миллиардов лет назад произошел взрыв сверхновой звезды. Может быть, он и послужил непосредственным толчком к началу формирования из межзвездного облака нашего Солнца и его планетной системы. Дело в том, что обычно исходная плотность межзвездных облаков недостаточна для самопроизвольного развития в них процессов образования звезд и планет. Однако взрывы сверхновых сопровождаются возникновением в межзвездной среде ударных волн, которые приводят к повышению давления и плотности вещества. При этом могут возникать сгущения, способные в дальнейшем сжиматься уже за счет самогравитации.

Примерно так, по расчетам ученых, и происходило зарождение нашей системы, в центральной области которой по мере роста давления и температуры сформировался гигантский газовый сгусток – Протосолнце. Одновременно со сжатием протосолнечного облака под влиянием центробежных сил его периферийные участки стягивались к экваториальной плоскости вращения облака, превращаясь, таким образом, в плоский диск – протопланетное облако.

Однако формирование Солнца как нормальной желтой звезды из сжимающегося первичного сгустка газов и пыли происходило значительно быстрее, чем формирование планет – «всего» несколько миллионов лет. Поэтому молодое Солнце неизбежно влияло на условия слипания вещества в окружающем его протопланетном диске. За счет солнечного ветра (высокоэнергетического потока заряженных частиц) из околосолнечного пространства были выметены на периферию нашей системы все газовые и летучие компоненты исходного облака.

С другой стороны, молодое Солнце таким образом «прогрело» первоначальное газопылевое облако, что еще до начала процесса формирования планет оно оказалось существенно дифференцированным. Так, например, есть определенная зависимость плотности планет от их расстояния от Солнца, и только внешние планеты Солнечной системы обладают массивными газовыми оболочками. Если бы кому-то довелось наблюдать со стороны все то, что творилось в нашей системе, то наверняка картина напоминала бы раскрученный с большой силой «волчок», центром которого было Солнце. Но постепенно с ростом плотности в этом плоском диске резко возросла вероятность столкновения частиц и их слипания. Так появились первичные тела диаметром всего в несколько метров. Дальнейшее уплотнение первичного роя тел способствовало их дальнейшему росту и постепенному превращению в более крупные тела с поперечными размерами уже на многие десятки и сотни километров. В этих условиях у таких крупных «зародышей» стал появляться самостоятельный характер – собственное гравитационное поле, которое еще более увеличивало возможности захвата мелких тел. Одним из таких зародышей четыре с половиной миллиарда лет назад стала наша Земля.

Этот способ моделирования описал в 1969 году в своей книге В. С. Сафронов. В ней утверждалось, что в начале своего развития Земля не была огненно-жидким шаром, а представляла собой достаточно холодное образование. И если внутри нее и были разогретые участки, то это были магматические очаги, но в целом расплавленной Земля не была. Однако в этой фундаментальной теории еще в семидесятые годы образовалась трещина. Дело в том, что по расчетам учёного А. Витязева, «В. С. Сафронов существенно занизил оценки размеров крупнейших тел, падающих на Землю». Ученый предполагал, что максимальный диаметр тел, которые сталкивались с нашей молодой планетой, составлял не более ста километров. Однако, по расчетам А. Витязева, вполне вероятными были катастрофы, когда встречались тела с лунными размерами. Этот просчет в сложной модели развития Земли неминуемо привел к недоучету температуры, которая была внутри Земли. «В реальности эта цифра оказалась всего-то на какие-то сотни градусов больше, – объясняет А. Витязев, – но это уже радикально меняло ситуацию».

И в конце семидесятых годов стало ясно, что эти пресловутые сотни градусов позволили начаться эволюции Земли еще в ходе ее формирования. И в то время, когда внутри планеты уже началась дифференциация вещества, по ее поверхности все еще «стучали» метеориты и астероиды, которые одновременно привносили различные газы, а часть их удаляли. Кроме этого за последние десятилетия произошло еще два события, которые коренным образом изменили наши представления о ранней эволюции Земли. Первое, и, пожалуй, самое интересное – это открытие астрофизиками около сотни газопылевых дисков около молодых звезд солнечного типа. Эти диски оказались такой же массы и таких же размеров, как и диск около нашего молодого Солнца.

Другое открытие заключается в доказательстве того, что наблюдаемые кратеры на твердых поверхностях многих планет и спутников – это лишь последние следы, по которым можно восстановить только часть спектра относительно маломассивных тел, формировавших планеты. А промежуточные по своим размерам тела, которые и определили общее число планет Солнечной системы, особенности их орбит, исчезли в катастрофических столкновениях.

9.2.2. Экологическая структура мезомира

Кроме явлений макромира (объектов космического масштаба) и микромира, существуют явления мезомира, доступные непосредственному наблюдению. При наблюдении на уровне мезомира явление космического порядка – биосфера Земли – представляется в виде сложной мозаики различных систем – биоценозов (живых органических миров), наполняющих соответствующие ландшафты и ландшафтные комплексы (что называют геобиоценозами). Составной частью таких систем являются и человеческие сообщества.

Жизнедеятельность каждой системной человеческой целостности обусловлена вхождением в систему более высокого уровня – в биоценоз вмещающего (кормящего) ландшафта. «Социальная стратификация» («системная иерархия») опосредствована закономерностью функционирования сложных систем: человеческие сообщества в качестве субсистем входят в системные общности геобиоценозов, снабжающих элементы данной субсистемы (людей) энергией (питанием). Воздействие потоков энергии в этой сложной системе обуславливает разность потенциалов, что поддерживает внутриструктурную дифференциацию во всех подсистемах, в том числе – различные иерархические структуры в человеческих сообществах.

Являясь частью живой биомассы, человек подвержен всем законам развития живого, в том числе, – закону группировки во внутривидовые таксоны, как группируются в популяции все виды живого на Земле, адаптируясь во вмещающих ландшафтах местообитания. Основой такой группировки служат трофические цепи перераспределения энергии (трофические цепи питания) в биоценозах вмещающих ландшафтов. Именно звенья этих трофических цепей определяют положение живых систем в биосфере планеты Земля и дают живым организмам биохимическую энергию для их функционирования. Этот естественнонаучный взгляд на природу системных процессов, протекающих в человеческих сообществах, лежит в основе биогеографической концепции этногенеза Л. Н. Гумилева.

Заметим, что именно эти системные закономерности рассматривались, например, историческим материализмом в качестве социально-экономических закономерностей, присущих только человеческому обществу. Хотя те же закономерности обеспечивают иерархию внутри волчьих стай и оленьих стад, а также сложнейшую социальную структуру, напоминающую структуру макрогородских образований, в муравейниках. В живой природе субсистемы (популяции), связанные с системами своих биоценозов потоками энергии (трофические цепи питания), составляют феномен космического масштаба – биосферу Земли – систему, открытую путем «эмпирического обобщения» и описанную В. И. Вернадским.

Представители вида Homo sapiens, подобно всем иным видам живого, должны группироваться в своеобразные энергетические таксоны, в системы с функциональными характеристиками популяций. Структуры, состоящие из подобных систем, Л. Н. Гумилев отождествил с этносами. Сообщества человека популяционного уровня входят в сверхсистемы биоценозов.

Сами системы биоценозов (комплексы популяций) относятся к феноменам мезомира (явлением на порядок ниже планетарного уровня, наблюдаемого непосредственно, «географически»), оставившим на протяжении биологической эволюции свой «след» в структуре отложений разнохарактерных осадочных пород. Их совокупность является результатом функционирования биосферы в целом и как целого.

9.2.3. Информационные свойства мезомира

Ныне известны и доступны для изучения явления мезомира, классифицируемые здесь, как «информационный след». Это результаты функционирования крупных сообществ животных (залежи нефти или гекатомбы динозавров) и растений (залежи каменного угля) в осадочных породах планетарной биосферы.

Оставлен такой информационный след в верхних слоях биосферных отложений и сообществами человека. Это и известные всем монументальные сооружения древности, остатки городов, замков, дворцов; это и особые почвенные покровы. К ним относятся различные типы почв, подвергнувшиеся антропогенному воздействию со стороны человеческих популяций, и носящие название «пахотные земли» или «фонд землепользования».

Наиболее выражена антропогенизация (изменение, привнесенное людьми) так называемого «культурного слоя» (слоя грязи, мусора и всевозможных отходов, сопровождающих деятельность людей), в основном на местах селитебных систем – различных типов поселенческих структур (городов, крепостей, селений). Он насыщен остатками жизнедеятельности человеческих сообществ – обломками бытовых предметов: утвари, в том числе – керамики, орудий труда, оружия, украшений (различных артефактов). Их комплексы различаются по стилистическим особенностям, поскольку они оставлены различными человеческими сообществами, по-разному адаптирующимися к различной среде обитания. Ведь каждый комплекс ландшафтов, служивший местом развития и местом обитания каждого человеческого сообщества, уникален и неповторим.

Кроме остаточной информации – информационного следа на популяционном уровне – действуют и информационные потоки, связывающие популяционные системы в единое целое планетарной биосферы и в прошлом, и ныне.

«Носители информации», наблюдаемые на уровне мезомира, едины для всех живых особей Земли, – это генетические коды, биохимически модифицируемые цепочками макромолекул дезоксирибонуклеиновой кислоты (ДНК). Так заданы морфологические и физиологические параметры каждого живого организма, в том числе – каждого человека. Кроме биохимических носителей наследственной информации (ДНК), существуют и иные механизмы межпопуляционного общения и передачи «коллективной памяти», кристаллизующейся в процессе популяционной динамики, т. е. информации, выработанной в разных ландшафтных условиях, разными сообществами живых организмов (популяциями), но относящимися к одному биологическому виду.

Изменения, накапливающиеся в генах, вследствие мутагенных процессов на популяционном уровне протекают в масштабе «геологического времени» (миллионов лет формирования и существования видов), а не в масштабе «исторического времени», где единицей измерения служит век (реже – тысячелетие). Законы внутривидовой конкуренции, борьбы за существование, и связанное с их воздействием выживание популяций, действуют именно в масштабах исторического времени и зависят от скорости информационного потока и скорости накопления информационных объемов.

Животный мир использует для передачи из поколения в поколение «вторую сигнальную наследственность», по определению профессора М. Е. Лобашова, то есть обучение. Обучение присуще разным классам живых организмов – насекомым (муравьи, пчелы), птицам и млекопитающим. Не является исключением и человек, вырабатывающий «коллективную память» в процессе эволюционной динамики своих популяций и передающий эту информацию при помощи механизмов второй сигнальной наследственности – обучения.

Элементы искусственной среды обитания (предметной, вещевой среды) оказались особо значимыми для человека именно в процессе информационной трансмиссии (как принято называть передачу информации и в современной этнографии). Информатика человека – «вторая сигнальная система» – по сравнению с аналогичными «информационными системами» приматов – сверхразвита.

В силу сверхразвитости человеческой «второй сигнальной наследственности», статус элементов искусственной, вещевой среды, создаваемой человеком, приобрел особый характер. Вещи бытового назначения приобрели статус символа – носителя значительного объема информации, передаваемого из поколения в поколение. Часто такие вещевые символы стали специально изготовляться. Они несли информацию о временах года и календарных периодах; о наиболее удачных сроках охоты; о сезонных передвижениях животных.

На Бюраканском Международном симпозиуме по внеземным цивилизациям были сделаны попытки дать определение и человеческой цивилизации, как системе по «накоплению и обобщению информации об окружающем мире и о себе самих, с целью выработки сохраняющих реакций».

Именно накопление и обобщение негенетической информации выделяет человека из животного мира, в результате выработки принципиально новых механизмов сохранения «коллективной памяти» («метаязык» человека, по сравнению с «субъязыком» прочих приматов; «метаязык», выработавшийся не без участия символических предметов искусственной вещевой среды – материальной культуры, – предметов, ставших носителями информации).

Основной импульсной системой, «первым уровнем кодировки», «начальным модулем» в информатике человеческих сообществ стала речь, относимая физиологами ко второй сигнальной системе. Первая сигнальная система – эмоциональная реактивность, рефлекторные реакции на воздействия окружающей среды, – наряду со второй сигнальной системой присуща и животным, и человеку.

Сигнальная система звуковых модулированных оповещений (язык), например, у ворона, насчитывающая не менее 300 семантически значимых звукосочетаний (слов), не совпадает в географически различных ареалах, в разных группах популяций. Поэтому вороны Канады не понимают воронов Европы.

Вторая сигнальная система, как функция сенсорно-эмоциональной сферы, как реакция этой сферы сознания на воздействие естественной окружающей среды, была различна и в географически разобщенных человеческих популяциях. Своего рода овеществленное или материализованное, обращенное вовне выражение основной импульсной системы имеется и у животных, и у человека, – это система знаковых выражений речи. Ее различия у разных видов живого связаны с особенностями сенсорной сферы – сферы восприятия окружающего.

Человек около 90 % информации об окружающем мире воспринимает зрением (мир зрительных образов), собака – обонянием (мир запахов), кошка – слухом (мир звуков), что закрепилось в выражении, ставшем почти поговоркой: собака видит мир носом, а кошка ушами. Отметим, что данное определение антропоцентрично, – «видит» мир – это от человеческого мировосприятия, где зрительные образы являются основными.

Видимо из-за специфики мировосприятия знаковая функция в животном мире более ориентирована на обоняние: животные метят «свою» территорию выделениями, где набор феромонов (специфических пахучих веществ) является носителем общеразличимой информации.

Пахнущий феромоном смерти (вещество, выделяемое при гибели) муравей, – даже живой, невредимый и очень активный, но смазанный микроскопической дозой этого пахучего вещества, – выдворяется своими сожителями из муравейника и препровождается на специальное муравьиное кладбище. При возвращении отмеченного «запахом смерти» в муравейник, процедура повторяется до тех пор, пока пахучее вещество полностью не выветривается.

Такой механизм, как компонент сложных процессов на уровне подсознания, сохранился и у человека в сфере сексуального выбора и комплиментарности (возможность бессознательно и, казалось бы, беспричинно нравиться друг другу). Зрительная образность, как доминанта мировосприятия человека, и система воздействия человека на окружающий мир при помощи орудий (создание искусственной, «вещевой» среды обитания и «сферы жизнеобеспечения») способствовали специфике своеобразного знакового и зримого воплощения человеческой речи. Речь существовала не только как внутригрупповая или межгрупповая коммуникативная функция, она «вторично материализовалась».

Стремление к самовыражению в зримых образах привело к появлению наскальных рисунков и громадной категории предметов материальной культуры, определяемых как предметы первобытного искусства. Попытки обозначить территорию человеческих сообществ имели человеческий модуль, присущий нашему биологическому виду, – зримые образы, с первого взгляда отличаемые от всего естественного, природного, – наскальные рисунки и пиктограммы, высекаемые, вырезываемые или нарисованные на древесных стволах (как правило, не сохранились), на камнях, на стенках обрывов и скал.

Их первичная роль в механизмах уже упомянутой «второй сигнальной наследственности» иллюстрируется «пещерной живописью», где её роль межевых отметок еще отсутствует. Позднее, в эпоху среднекаменного века – мезолита, появляются изображения на открытых поверхностях, которые могли исполнять и подобную функцию. Все эти рисунки несли известную их создателям семантическую нагрузку (определенный смысл), понятную в контексте синтагматических связей древних информационных систем, почти безвозвратно утерянных и сохранившихся только в наиболее архаичных пластах архетипов человеческого сознания, отраженных наиболее общими и издревле сохранившимися лингвистическими структурами. Синтагматические многоплановые связи таких знаков (способность каждого из элементов сочетаться друг с другом в разных контекстах) характеризуют человеческие сообщества как сложноструктурные системы, с огромным количеством внутренних и внешних информационных коммуникаций.

Различное количество информации, которыми располагают разные категории людей, связывает все человеческие группы в пределах каждого культурного ареала в сложную систему, где каждая группа является блоком единой структуры – человеческого сообщества данного ареала. Все группы обуславливают существование друг друга. Таким образом, информационный обмен является непосредственной движущей силой поступательного развития человечества, его прогресса. Думается, что информационный обмен между разными сообществами людей, имеющими различно модулированное «информационное поле», приводит к еще одному образованию – появлению человеческих групп или группы на стыке контактирующих. Это ведет к количественному увеличению структурных элементов человечества в целом, к его усложнению, а сложные системы, как известно, устойчивее и жизнеспособнее простых. Упрощение системы – это путь к ее деградации и распаду (что и происходило при изоляции отдельных человеческих сообществ), а усложнение – залог эффективного существования и успешного развития, что наблюдается на примере всего коммуникабельного, объединенного информационными сетями человечества.

Если комплексы сохраняющих реакций овеществлялись древними сообществами человека в виде передаваемых из поколения в поколение умений и становились навыками (при обработке каменных орудий, например), то информация, не требовавшаяся сиюминутно, но необходимая во время катаклизмов и потрясений, не закреплялась ежедневной утилитарной практикой. Она могла быть востребована через два-три, или более сменяющих друг друга поколений, и такую информацию, не закрепленную в навыках, пытались сохранить путем знакового овеществления.

9.3. Микромир

Учение об элементарных частицах. Стандартная модель мироздания. От элементарных частиц к фундаментальным законам природы. ô Элементарная структура вещества. Молекулы – атомы – электроны – ядра. ô Устойчивость и неустойчивость частиц. Термоядерные процессы. Взаимопревращения микрообъектов. Лептоны – адроны – кварки. ô Фундаментальные взаимодействия и законы природы. ô Фундамент материи. Физический вакуум и его состояния. Виртуальные частицы.

Одним из наиболее специфических свойств микрообъекта является наличие в его поведении элементов случайности, вследствие чего квантовая механика предстаёт как принципиально статистическая теория, оперирующая вероятностями. В чем же причина того, что в поведении микрообъекта так велика роль случайности? Очевидно, это объясняется спецификой квантовой механики, в которой ни один объект не может, строго говоря, считаться полностью изолированным, полностью независимым от окружения. Какова природа случайных воздействий на микрообъект? Например, в квантовой теории поля она проявляется в явном виде – как взаимодействие микрообъекта с вакуумом (вакуум не пустота, – он «заполнен» виртуальными зарядами). Можно сказать, что микрообъект взаимодействует с окружающим его миром через виртуальные микрообъекты.

Поэтому представляется совершенно естественной интерпретация корпускулярно-волнового дуализма как потенциальной способности микрообъекта проявлять те или иные свойства в зависимости от внешних условий. Это подразумевает органическую связь микрообъекта с окружающим его миром – ведь сама сущность микрообъекта реализуется в том или ином виде в зависимости от конкретных условий, конкретной обстановки.

Квантовая механика восстанавливает диктуемую жизненным опытом идею единства мира и всеобщей связи явлений, которая была в значительной мере утрачена в классическом естествознании. Стираются существовавшие ранее резкие различия между волнами и корпускулами, между частицами и полями, между объектами наблюдения и средой; на первый план выдвигаются взаимопревращения материи.

9.3.1. Учение об элементарных частицах

После той непонятной и запутанной ситуации, которая была характерна для физики 1950 – 1960 годов, когда открываемые «элементарные частицы» исчислялись буквально сотнями, и их число продолжало непрерывно расти, сегодня положение заметно изменилось: мы имеем достаточно простую теорию фундаментальной природы материи и энергии, а также их трансформаций. Возникла так называемая стандартная модель мироздания, согласно которой физический универсум строится на основе двух групп фундаментальных составляющих: кварков* (из которых состоят нуклоны* и атомные ядра) и лептонов* (из которых наиболее известным является электрон). На основе этих двух групп частиц далее строятся атомы и молекулы – основа всей химии и биологии.

Согласно стандартной модели, кварки и лептоны связаны и взаимодействуют между собой посредством другой группы частиц, именуемых калибровочными бозонами*, такими как фотон, W- и Z-бозоны и глюоны. Известные в природе различные взаимодействия сведены к трём фундаментальным видам: электрослабому*, цветовому* и гравитационному, причём первые два сходным и весьма элегантным способом описываются в рамках концепции калибровочного поля*. Кроме того, есть надежда, что в обозримом будущем удастся создать теорию великого единения всех сил природы.

Всё же, несмотря на успех стандартной модели, многие из тех вопросов, которыми задаются сегодня физики в поисках полной «теории всего сущего», остаются неразрешёнными. В число этих вопросов входят:

  • Каково происхождение массы и чем определяются массы различных элементарных частиц? Будут ли экспериментально обнаружены хиггсовы бозоны* – гипотетические частицы, специально постулированные в рамках стандартной теории для объяснения явления спонтанного нарушения симметрии?
  • Будет ли открыто ещё одно поколение кварков и лептонов, а вместе с ним ещё один, более фундаментальный уровень элементарных частиц?
  • Существуют ли в природе другие, ещё не открытые нами силы?
  • Подтвердятся ли такие теоретические идеи, как, например, идея суперсимметрии* и техницвета*? Удастся ли физикам обнаружить постулируемые ими суперсимметричные частицы? Будем ли мы иметь полную теорию «всего сущего»? Оправдает ли теория суперструн* связываемые с ней надежды[v]?

Исторически термин «элементарные частицы» был введен для тех частиц, которые считались неделимыми и бесструктурными, и из которых построена вся материя. В современной физике этот термин употребляется менее строго – для обозначения большой группы «мельчайших частичек материи», не являющихся атомами и атомными ядрами (единственным исключением является протон.)

В группу элементарных частиц помимо протона входят нейтрон, электрон, фотон, а также пи-мезоны, мюоны, тяжелые лептоны, нейтрино трех типов (электронное, мюонное и t- нейтрино), странные частицы (K – мезоны, гипероны), огромное количество разнообразных резонансов, мезоны со скрытым очарованием (J/Y, Yв) и другие «очарованные» частицы, ипсилон-частицы (U), «красивые» частицы, промежуточные векторные бозоны (W±, Z0) – число таких частиц продолжает расти – (открыто около 1000) и, скорее всего, неограниченно велико. Большинство перечисленных частиц, строго говоря, не удовлетворяют критерию элементарности, так как являются составными объектами. В соответствии со сложившейся практикой термин «элементарные частицы» употребляется для обозначения всех субъядерных частиц.

При обсуждении частиц, претендующих на роль первичных элементов материи, используют термин «истинно элементарные» или «фундаментальные частицы». При этом, наряду с уже известными частицами, такими как электрон, фотон и нейтрино, теоретики вынуждены вводить новые частицы, которые еще только предстоит обнаружить. Часть же требуемых частиц (например, кварки) оказалось необходимым наделить такими свойствами, что они никогда не будут обнаружены в свободном состоянии (вне составных элементарных частиц).

Изучение элементарных частиц и их взаимодействий представляет прямой (возможно единственный) путь к пониманию фундаментальных законов природы. Информация об элементарных частицах получается либо в результате экспериментов с космическими лучами, либо с помощью построенных ускорителей.

В зависимости от типа ускоряемых частиц различают протонные и электронные ускорители. Кроме того, ускорители бывают кольцевые и линейные. В линейных ускорителях частицы разгоняют вдоль прямой линии. В кольцевых ускорителях, «циклотронах», частицы ускоряются, летая по кругу. Использование ускорителей позволяет изучать свойства элементарных частиц и излучений в самых разных условиях. Подвергая определенные мишени бомбардировкам этими частицами, можно получить атомы других элементов, в том числе – и доселе неизвестных. Именно таким способом получают в научном центре в Дубне новые элементы Периодической системы Д. И. Менделеева.

В кольцевых ускорителях, вдоль всего кольца, в котором движутся разгоняемые заряженные частицы и из которых откачан воздух, стоят электромагниты. Чем сильнее магнитное поле, тем более энергичные частицы могут быть удержаны внутри кольца (камеры). Разгоняются частицы при помощи электрического поля в ускоряющих промежутках, которые расположены вдоль кольца. В кольцевом ускорителе, где частица может многократно пролететь вдоль кольца, пока не наберет нужную энергию, электрическое поле может быть не очень сильным. В линейном ускорителе, напротив, ускоряющие электрические потенциалы должны быть предельно высокими, потому что частица должна набрать всю свою энергию за один пролет. (Линейные ускорители используются также и для получения высокоэнергичных пучков ионов и ядер.) Один из самых больших действующих линейных ускорителей (SLAC) расположен в Стэнфорде (вблизи Сан-Франциско, США).

9.3.2. Элементарная структура вещества. Атом

Все окружающие нас предметы, а также и живые существа состоят из маленьких частиц, обычно – молекул. Молекулы же, в свою очередь, состоят из атомов. В составе молекулы может быть много атомов, пример тому – обыкновенный спирт. Молекула может состоять также из небольшого количества атомов, бывает, даже из одного атома. В таких случаях обычно говорят, что предмет просто состоит из атомов. Медная проволока, например, состоит из молекул, каждая из которых имеет в своем составе единственный атом. Можно сказать, что медная проволока просто состоит из атомов меди

Атомы, в свою очередь, тоже состоят из частиц. В середине каждого атома находится ядро, состоящее из двух видов частиц протонов и нейтронов. Бывают ядра, в которых совсем нет нейтронов (пример тому – ядро атома водорода), но это случается редко. Протоны и нейтроны имеют очень маленькую массу, приблизительно равную массе атома водорода. Каждый протон заряжен положительно, и величина его заряда равна +1. А вот нейтрон не заряжен, то есть заряд его просто равен нулю.

Если посмотреть на ядро в сборе, то оно в целом окажется заряженным положительно, а заряд его будет равен числу содержащихся в ядре протонов. Чтобы уравновесить положительный заряд ядра, необходимо окружить его в атоме отрицательно заряженными частицами, называемыми электронами. Заряд одного электрона равен -1, то есть для нейтрализации положительного заряда необходимо расположить столько же электронов, сколько протонов содержится в атомном ядре. Масса каждого электрона в тысячи раз меньше массы протона (или нейтрона), поэтому любой атом весит примерно столько же, сколько весит его ядро.

Если атом не трогать, то он будет жить своей жизнью в так называемом «основном» состоянии, в котором электроны располагаются вокруг ядра в строго определенных местах в соответствии с известными им законами. Если на атом оказать воздействие, хорошенько нагрев предмет или поместив в сильное электромагнитное поле, то некоторые электроны просто не смогут удержаться на своих местах и начнут от избытка энергии перемещаться на большее от ядра расстояние. Такое состояние атома называют «возбужденным». Бывает, однако, что через некоторое время часть электронов возвращается на свои законные позиции, при этом тот самый избыток энергии выхлестывается наружу, вызывая яркое свечение.

Именно таким образом возникает свечение электрической лампочки, когда под действием электрического тока многочисленные атомы вольфрама дружно переходят то в возбужденное состояние, то обратно. Если еще более усилить воздействие на атом, то часть электронов может совсем улететь, при этом атом в целом приобретет положительный заряд. Такое состояние атома называют «ионизированное», а сам атом называют «ионом». На явлении улетания электронов основано устройство кинескопа телевизора. Из нагретой нити вылетают отрицательно заряженные электроны, которые тут же устремляются к положительно заряженному экрану телевизора, вызывая его свечение. Если хорошо постараться, то можно заставить улететь из атома абсолютно все электроны. Атом в таком состоянии уже никак не называется, потому что это теперь не атом, а обыкновенное ядро. В совсем уж экстремально жарких условиях, например, внутри Солнца, материя как раз состоит из таких вот ядер.

9.3.3. Устойчивость и неустойчивость частиц.

Термоядерные процессы. Ядро атома

Все элементарные частицы, за исключением фотона, электрона, протона и обоих нейтрино, нестабильны. Это означает, что они самопроизвольно, без каких-либо внешних воздействий распадаются, превращаясь в другие частицы. Например, нейтрон самопроизвольно распадается на протон, электрон и электронное антинейтрино. Невозможно предсказать, когда именно произойдет указанный распад того или иного конкретного нейтрона; каждый конкретный акт распада случаен. Однако если проследить за множеством актов, то обнаруживается закономерность распада.

Каждая нестабильная элементарная частица характеризуется своим временем жизни. Чем меньше время жизни, тем больше вероятность распада частицы. Например, время жизни мюона составляет 2,2 10-6 с, положительно заряженного π-мезона – 2,6 10-8 с, нейтрального π-мезона – 10-16 с, гиперонов – около 10-10 с. В 70-х годах были обнаружены около 100 частиц с очень малым временем жизни – 10-22 – 10-23 с, получивших название резонансов. Примечательно, что гипероны и мезоны могут распадаться различными способами. Например, положительно заряженный π-мезон может распадаться на мюон и мюонное нейтрино, на позитрон (антиэлектрон) и электронное нейтрино, на нейтральный π-мезон, позитрон и электронное нейтрино. Для конкретного π-мезона нельзя предсказать не только время распада, но и тот способ распада, который данный мезон «выберет».

Нестабильность присуща не только элементарным частицам, но и другим микрообъектам. Явление радиоактивности (самопроизвольное превращение изотопов одного химического элемента в изотопы другого, сопровождающееся испусканием частиц) показывает, что нестабильными могут быть атомные ядра. Атомы и молекулы в возбужденных состояниях также оказываются нестабильными: они самопроизвольно переходят в основное или менее возбужденное состояние.

Определяемая вероятностными законами нестабильность есть, наряду с наличием спина, второе сугубо специфическое свойство, присущее микрообъектам. Его также можно рассматривать как указание на некую «внутреннюю сложность» микрообъекта.

Однако нестабильность – это специфическое, но отнюдь не обязательное свойство микрообъекта. Наряду с нестабильными существует много стабильных микрообъектов: фотон, электрон, протон, нейтрино, стабильные атомные ядра, а также атомы и молекулы в основном состоянии.

Взаимопревращения микрообъектов. Глядя на схему распада нейтрона, можно предположить, что нейтрон состоит из связанных друг с другом протона, электрона и электронного антинейтрино. Такое представление ошибочно. Распад элементарной частицы отнюдь не является распадом в прямом смысле слова; это акт превращения исходной частицы в некую совокупность новых частиц: исходная частица уничтожается, новые частицы рождаются. Несостоятельность буквального толкования термина «распад частицы» становится очевидной, если учесть, что многие частицы имеют несколько способов распада. Картина взаимопревращений элементарных частиц оказывается существенно богаче и сложнее, если рассматривать частицы не только в свободном, но также и в связанном состоянии.

Повседневный опыт учит: разобрать предмет на части – значит выяснить, из чего он структурно состоит. Идея анализа (идея дробления) отражает характерную сторону классических представлений. При переходе к микрообъектам эта идея в определенной мере еще «работает»: молекула состоит из атомов, атом состоит из ядра и электронов, ядро состоит из протонов и нейтронов. Однако на этом указанная идея себя исчерпывает: «дробление», например, нейтрона или протона не выявляет никакой структуры этих частиц. В отношении элементарных частиц нельзя утверждать: «распад объекта на какие-либо части означает, что объект состоит из этих частей». Именно это обстоятельство может служить определением самого термина «элементарная частица».

Распады элементарных частиц далеко не исчерпывают всех происходящих взаимопревращений частиц. Не менее богата картина взаимопревращений, происходящих при столкновениях частиц.

Ядра в различных атомах могут быть стабильными и нестабильными. В первом случае с атомами ничего интересного не происходит. Во втором случае, наоборот, происходит распад ядра. Явление, когда ядра сами по себе распадаются, называется радиоактивностью. Распад ядер обычно сопровождается вылетанием наружу ряда частиц. Чаще всего вылетают положительно заряженные альфа-частицы (это ядра гелия, состоящие из двух протонов и двух нейтронов) и отрицательно заряженные бета-частицы (это – попросту электроны). Радиоактивный распад часто сопровождается гамма-излучением, это что-то наподобие радиоволн. При распаде некоторых атомов бывают случаи, когда происходит вылетание и других частиц, скажем, нейтронов. В некоторых случаях вылетает и самая маленькая из известных частиц (до сих пор неизвестно, есть у этой частицы вообще хоть какая-нибудь масса!) – нейтрино. Также встречаются атомы, распад которых сопровождается не гамма-излучением, а каким-нибудь другим, например, рентгеновским.

Образующиеся при радиоактивном распаде частицы и лучи очень опасны для здоровья. К счастью, эти лучи и частицы поглощаются различными материалами. Поэтому людям можно и нужно защищаться от вредных проявлений радиоактивности. Лучше всего поглощаются альфа-частицы, ведь они полностью застревают даже в обычном листе бумаги! Также совсем несложно защититься от бета-частиц. Кстати, нам повезло: альфа – и бета-частицы – самые опасные. Но поскольку они практически не проходят через кожу, бояться таких радиоактивных препаратов не надо (важно только не принимать их вовнутрь – иначе вещество быстро попадет в кровь и все закончится плохо).

К сожалению, чисто альфа – и бета-излучатели встречаются крайне редко, и распад подавляющего числа радиоактивных атомов сопровождается достаточно опасным гамма-излучением, от которого защититься значительно труднее, чем от неповоротливых альфа и бета-частиц. Чем толще и тяжелее слой защитного материала, тем эффективнее получится наша защита от проникающей радиации. От мощного гамма-излучения вполне удается защититься многометровыми слоями бетона. Неплохо также для изготовления защиты использовать материалы из свинца и вольфрама. Но и тут не все так гладко. Например, чрезвычайно опасные частицы – нейтроны – как раз довольно легко проходят через свинец и вольфрам, но зато они неплохо застревают в полиэтилене и даже в обыкновенной воде! Самые проникающие частицы (к счастью, неопасные) – это нейтрино. Эти частицы проходят через любые материалы, совершенно в них не поглощаясь. Они умудряются беспрепятственно пролететь даже сквозь земной шар.

Рост и изменение организма – пример все более развивающейся во времени, все более высокой упорядоченности. Но неизбежно наступает момент, когда человек умирает, машина отправляется в переплавку, а стела, повествующая о деяниях фараонов, трескается. Есть и еще одно, по-видимому, более важное свойство нашего мира, определяющее прямой полет времени: различие между атомами и антиатомами. Антиатомы – это точно такие же атомы, но их заряды изменены на противоположные. Атом водорода похож на маленькую планетную систему из положительного солнца-протона и отрицательной планеты-электрона. Это очень неточное, приблизительное сравнение, но для нашего разговора вполне достаточное. У антиводорода центр системы займет отрицательный антипротон, а вращаться вокруг него станет положительный электрон – позитрон. Физические и химические свойства таких «зеркальных» атомов остаются теми же. Единственное, чего нельзя делать, – это допускать их соприкосновения. Произойдет то, что физики называют аннигиляцией, – взрыв, в котором «сгорят» оба атома, породив поток излучения.

Советские и американские физики установили, что измениться на противоположный может не только заряд, но и «четность». Грубо говоря, это значит, что позитрон станет вращаться вокруг антипротона не по часовой стрелке, как электрон вокруг протона (повторяю, все это крайне грубая аналогия), а против, то есть станет еще и зеркальным отображением атома. Таким образом, можно, по крайней мере, мысленно, представить себе галактику из антиматерии, да к тому же еще и являющуюся зеркальным отображением другой галактики.

И, наконец, были открыты такие взаимодействия между элементарными частицами, которые заставили предположить, что изменяется при этом знак не только заряда и четности, но и времени. «Вполне может случиться, – заключает М. Гарднер, – что во Вселенной нет галактик из антиматерии. Но физики любят уравновешивать все на свете, и если во Вселенной имеется столько же антиматерии, сколько материи, то могут существовать и такие области космоса, в которых все три симметрии меняют знак. События в нашем мире, однозначные относительно заряда, четности и времени, будут все идти противоположным путем в «обращенной» галактике. Материя такой галактики должна быть зеркально отраженной, противоположной по заряду и двигающейся назад во времени».

Элементарные частицы появляются не только при радиоактивном распаде. Как мы уже знаем, если поместить совершенно стабильные атомы в какие-либо неординарные условия (сильное магнитное поле, высокая температура и т. п.), то все электроны быстро улетят, и мы получим голые заряженные ядра. Эти ядра можно затем разогнать до высоких скоростей и энергий в электромагнитном поле. Обычно любят разгонять ядра атомов водорода – эти ядра самые легкие, потому что каждое состоит всего лишь из одного протона. Пучок разогнанных частиц, направленный на какой-нибудь материал – «мишень», выбьет из этой мишени другие интересные частицы, которые можно изучать и направлять на другие мишени.

Существуют атомы, ядра которых при распаде помимо других частиц выделяют нейтроны. К таким атомам относятся, например, некоторые разновидности урана и плутония. В природном уране этих атомов немного, но уран-то можно «обогатить», отделив и отбросив все ненужные атомы. В результате полученный образец урана будет излучать очень интенсивный поток нейтронов. Чем больше возьмем мы такого урана и чем более плотно его упакуем, тем больше будет у нас интенсивность нейтронного потока. При достаточно большой интенсивности выделяющихся нейтронов уже хватит на то, чтобы начать выбивать дополнительные нейтроны из соседних атомов урана. Те, в свою очередь, также будут выбивать еще больше нейтронов из соседних к ним атомов. Пойдет так называемая «цепная реакция». Нейтронов будет становиться все больше и больше, и, в конце концов, дело кончится плохо – весь уран разрушится с образованием большого разнообразия других радиоактивных атомов. Что интересно, при этом выделится огромная энергия. Явление, только что рассмотренное нами, называется «ядерным взрывом», а устройство, которое сжимает образец обогащенного урана до требуемой плотности, называется «атомной бомбой».

Люди сконструировали приспособление, которое при необходимости вводит в зону с большим потоком нейтронов специальные материалы, эти нейтроны поглощающие. Регулируя степень вдвигания этих материалов, можно управлять скоростью цепной реакции, заставляя энергию выделяться постепенно. Такое устройство специалисты называют «ядерный реактор». Выделяющееся тепло подобных реакторов можно использовать для получения электроэнергии (такая электростанция называется атомной), а интенсивный поток нейтронов – для проведения всевозможных ядерных исследований.

Рассмотренные нами до сих пор процессы основаны на радиоактивном распаде ядер или на взаимодействии ядер с элементарными частицами. Удивительно, но существует некий особый класс реакций, основанных на слиянии двух или более ядер в одно. Такие процессы сопровождаются громадным выделением энергии и называются «реакциями термоядерного синтеза». Вот самый простой пример такой реакции. Берется смесь двух типов ядер водорода – ядра первого типа состоят из одного протона и одного нейтрона, а второго типа из одного протона и уже двух нейтронов. Реакцию начинают проводить при очень большой температуре: она нам необходима уже хотя бы для того, чтобы получить эти самые ядра, выгнав электроны из атомов. При взаимодействии двух разных ядер водорода они соединяются в ядра гелия (состоящие из двух протонов и двух нейтронов), а возникающий лишний нейтрон улетает восвояси.

Реакция сопровождается таким огромным выделением тепла, что его с большим запасом хватает для самопроизвольного продолжения соединения остальных атомов водорода. Устройство, в котором с успехом проводят описанную выше реакцию, специалисты называют «водородной бомбой», а сам процесс синтеза – «термоядерным взрывом». По аналогии с цепной реакцией деления ядер урана люди многие годы пытаются найти способ управления термоядерными процессами, чтобы получать энергию постепенно, а не в виде взрыва. К сожалению, пока науке неизвестно, какие материалы следует в этом случае вводить в зону реакции, и эта проблема до сих пор не решена.

Наше Солнце – это огромный источник энергии. Не будь его, жизнь на Земле была бы невозможной. Немудрено, что люди испокон веков стараются разобраться в устройстве нашего светила и понять, откуда же там берется энергия. К сожалению, Солнце само по себе очень плотное, и поэтому ученым удается наблюдать только его поверхность. Но даже скудные знания об интенсивности свечения поверхности, спектре, наличии пятен и температуре позволяют разработать стройную теорию процессов, происходящих в недрах Солнца. И такая теория уже построена. В её основе лежит разветвленная система реакций термоядерного синтеза, продукты которых вступают в аналогичные термоядерные реакции, приводящие к образованию все более тяжелых ядер.

Ученым удалось подобрать такие реакции, которые должны в конечном итоге привести к наблюдаемым ими свойствам поверхности Солнца. Но как проверить эту теорию? Вроде бы несложно, ведь в результате термоядерных процессов образуется большое число самых разных элементарных частиц и ядер, которые можно было бы исследовать. Не тут то было! Эти частицы не долетают до нас по простой причине – Солнце большое и плотное, и все продукты реакции застревают в нем, как в хорошей защите, даже близко не подходя к поверхности. Единственная частица, нейтрино, которая обладает высочайшей проникающей способностью, легко проходит сквозь толщу Солнца и вылетает к нам наружу. Реакции в центре светила сопровождаются образованием нескольких видов нейтрино с известными из солнечной теории свойствами. Все эти нейтрино, без всякого сомнения, долетают до Земли. Осталось только научиться их исследовать, чтобы проверить, верна ли теория строения Солнца.

9.3.4. Фундаментальные взаимодействия и законы

природы[vi]

Основные взаимосвязи между силами в природе описываются с помощью физических законов и принципов. К ним относятся:

  • Принцип общей относительности (все законы физики должны быть одинаковы в любых системах отсчета)
  • Принцип постоянства скорости света в вакууме в любых системах отсчета
  • Принцип эквивалентности (никакими экспериментами невозможно отличить движение с ускорением от нахождения в однородном поле тяжести)
  • К этому списку следует добавить фундаментальные соотношения квантовой механики, описывающие микромир. К наиболее важным относится:
  • принцип неопределенности Гейзенберга, запрещающий одновременное точное измерение положения частицы в пространстве и ее импульса (количества движения)
  • принцип Паули, запрещающий иметь в одном и том же месте пространства более двух частиц с полуцелым спином (т. н. фермионов электронов, нейтронов, нейтрино) с одним и тем же импульсом.
  • Кроме того, для любой замкнутой системы должны выполняться первое и второе начало термодинамики (закон сохранения энергии и закон неубывания энтропии). По своей сути законы физики являются феноменологическими, то есть представляют собой обобщение опытных данных. В этом смысле космос часто по праву называют уникальной природной лабораторией, которой надо только умело пользоваться.

Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий, при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил).

Теоретическое осмысление, стремящееся к единому, экономному описанию наблюдаемого многообразия, неоднократно приводило к «великим объединениям» внешне совершенно несхожих явлений природы. Так Ньютон понял, что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ. В настоящее время принят набор из четырех типов фундаментальных взаимодействий: гравитационные, электромагнитные, сильное и слабое ядерные. Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макромире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

Наблюдения астрономических явлений привело человечество к ряду важнейших открытий. Самый известный и важный пример—закон всемирного тяготения. Этот закон был сформулирован И. Ньютоном на основе законов планетных движений, выведенных И. Кеплером в начале XVII в. Закон всемирного тяготения Ньютона используется до настоящего времени для изучения движения естественных и искусственных космических тел в Солнечной системе, так как релятивистские поправки к движению тела со скоростью в десятки км/с, очевидно, малы.

В XIX в. триумфом теории тяготения Ньютона и математических методов аналитической механики стало предсказание существования новой планеты Нептуна Адамсом и Ле Верье.

В 1916 г. А. Эйнштейн, используя принципы эквивалентности и относительности, сформулировал релятивистское обобщение теории тяготения Ньютона – Общую теорию относительности (ОТО). Согласно ОТО, любая форма материи и ее движение являются источником гравитации, которая математически интерпретируется как «искривление» пространства-времени.

Наиболее известный пример космических источников гравитационных волн – двойные звездные системы, состоящие из двух нейтронных звезд с массами около 1.4 масс Солнца, вращающихся по вытянутым орбитам вокруг общего центра тяжести с периодами несколько часов. Такие системы обнаружены среди двойных радиопульсаров, когда одна нейтронная звезда из пары является радиопульсаром. Изучая времена прихода импульсов от пульсара, можно с помощью эффекта Доплера изучать особенности движения такой нейтронной звезды.

Из-за уноса энергии гравитационными волнами орбитальный период таких систем должен постоянно уменьшаться. Этот эффект был обнаружен у ряда двойных пульсаров (наиболее известный пример – PSR 1913+16), хотя изменение орбитального периода составляет крайне малую величину около одной десятитысячной доли секунды в год! Прямое детектирование гравитационных волн требует создания очень чувствительных детекторов, строительство которых ведется в США, Западной Европе и Японии. Из-за универсального характера тяготения именно ОТО служит основой для описания строения и эволюции Вселенной в целом.

Электромагнитное и слабое взаимодействия следуют за гравитационным по своей распространенности в природе. Основная информация, которую мы получаем о космических объектах, переносится переменным электромагнитным полем – электромагнитными волнами (фотонами).

Генерация электромагнитных волн связана с ускоренным движением электрических зарядов (в основном электронов). В отличие от гравитационных волн, генерация которых требует когерентного движения больших масс вещества, рождение электромагнитных волн в космосе происходит при хаотическом (тепловом) движении отдельных частиц космической плазмы, спонтанных и вынужденных переходах возбужденных атомов и при рекомбинации свободных электронов на атомные уровни.

Кроме этого важным источником электромагнитного излучения во многих космических объектах являются релятивистские электроны, движущиеся в магнитном поле (синхротронное излучение), а также рассеяние фотонов на свободных электронах (комптон – эффект). Свечение звезд обязано происходящим в их недрах термоядерным реакциям синтеза. Рождающиеся при этом рентгеновские фотоны многократно рассеиваются, поглощаются и переизлучаются, прежде чем достичь внешних слоев звезд (фотосферы), из которых они могут свободно покидать звезду.

Температуры фотосфер в тысячи раз меньше, чем в центре звезд, поэтому основное излучение звезд приходится на оптическую, ультрафиолетовую и инфракрасную области спектра. Фотоны уносят большую часть энергии, освобождаемую при термоядерных реакциях. В звездной плазме температуры (даже в фотосфере) столь высоки, что кинетическая энергия движения частиц намного превышает их потенциальную энергию кулоновского взаимодействия, поэтому вещество в обычных звездах с высокой точностью может рассматриваться как идеальный газ, характеризуемый температурой, плотностью и химическим составом.

Именно давление нагретого идеального газа противостоит сдавливающему воздействию гравитации в обычных звездах. Действие электростатических кулоновских сил, однако, становится определяющим в холодных космических телах—планетах, кометах, твердых частицах пыли. Нет ни одного свойства электромагнитных волн, которое не проявилось бы в космических условиях. Например, по эффекту расщепления спектральных атомных линий в магнитном поле (эффект Зеемана) определяют величину большого магнитного поля на звездах. Слабое магнитное поле в межзвездной среде (с напряженностью в миллион раз меньше поля Земли) может быть измерено по наблюдениям поворота плоскости поляризации электромагнитных волн от источников, «просвечивающих» межзвездную среду (эффект Фарадея).

Мощные токи, текущие в нейтронных звездах, поддерживают их колоссальное магнитное поле с напряженностью, в тысячи миллиардов раз превосходящих поле Земли, практически без затухания в течение миллионов лет. Вращение намагниченной нейтронной звезды приводит к возникновению огромных электрических полей вблизи ее поверхности, которые вырывают частицы с твердой поверхности нейтронной звезды, и ускоряют их до релятивистских скоростей. Синхротронное излучение таких частиц в магнитном поле рождает жесткие гамма кванты и приводит, в конечном счете, к возникновению наблюдаемого радиоизлучения пульсара.

Слабое взаимодействие также играет исключительно важную роль при эволюции звезд. Именно медленность основной реакции протон-протонного цикла в центре Солнца, идущей по каналу слабого взаимодействия, объясняет «долголетие» звезд типа Солнца (10 млрд. лет). Нейтрино очень слабо взаимодействуют с веществом. Поэтому звезды «прозрачны» для нейтрино. Нейтрино является прямым свидетелем ядерных реакций в центре Солнца. В настоящее время в ряде экспериментов поток нейтрино от Солнца уверенно зарегистрирован. Он оказался примерно вдвое меньше, чем ожидалось. Это различие может быть связано с фундаментальными свойствами нейтрино как элементарной частицы. По мере эволюции звезды роль нейтрино усиливается и у массивных звезд на финальных стадиях становится определяющей.

Нейтрино становится основным источником светимости массивной звезды на стадии сверхновой, когда силам гравитации, сжимающим ядро звезды, не в силах противостоять ни давление горячей звездной плазмы, ни даже квантовомеханическое давление электронов. Происходит процесс нейтронизации вещества, когда протоны соединяются с электронами с образованием нейтронов и нейтрино. В процессе катастрофического сжатия центра звезды формируется компактная нейтронная звезда с массой около массы Солнца и радиусом в 10 км, а нейтрино уносят практически всю освобождаемую энергию, составляющую около 15 процентов от массы покоя нейтронной звезды.

По современным представлениям, малая часть этой гигантской энергии может передаваться от нейтрино, окружающей вновь сформировавшуюся нейтронную звезду, массивной оболочке звезды, состоящей из обычного вещества. Оболочка равная нескольким массам Солнца сбрасывается, и наблюдается колоссальное астрономическое явление—вспышка сверхновой звезды. Правильность наших представлений о процессах слабого взаимодействия при коллапсе ядра звезды подтвердилась регистрацией потока нейтрино от вспышки сверхновой 1987 в Большом Магеллановом Облаке.

Cильные (ядерные) взаимодействия отвечают за многие важные ядерные реакции в недрах звезд и синтез тяжелых элементов. По современной теории «горячей Вселенной», образование основных химических элементов водорода и гелия – завершилось еще на дозвездной стадии эволюции Вселенной в эпоху, когда температура плазмы была около 1 млрд. градусов а «возраст» Вселенной был «всего лишь» 200 с. Более тяжелые элементы образовались в ходе термоядерных реакций синтеза в недрах звезд.

Однако в этих реакциях могут образовываться химические элементы только до элементов группы железа (кобальт, никель, железо). Дальнейшее присоединение нуклонов к ядрам требует затрат энергии. Рождение более тяжелых элементов происходит путем захвата ядрами нейтронов (протон захватить невозможно из-за огромных сил кулоновского отталкивания). Захваченные нейтроны в ядре превращаются в протоны с испусканием электрона и антинейтрино по каналу слабого взаимодействия, и атомный номер элемента, таким образом, увеличивается на 1. Эти процессы эффективно происходят во время вспышек сверхновых звезд. Расчеты показывают, что последовательным захватом нейтронов можно «сконструировать» все стабильные элементы вплоть до трансурановых.

Ядерные силы определяют специфическое состояние сверхплотной материи нейтронных звезд. Действительно, при массе в массу Солнца и радиусе 10 км средняя плотность нейтронной звезды порядка плотности атомного ядра. В некотором смысле нейтронная звезда представляет собой гигантское нейтральное атомное ядро. Принципиальное отличие, однако, заключается в том, что обычное ядро от развала на составные части удерживают ядерные силы, а нейтронная звезда существует из-за колоссальной гравитации собранного в ней вещества. Точного микроскопического описания вещества при таких плотностях в настоящее время нет из-за невероятной сложности этой задачи. Однако из астрофизических наблюдений пульсаров и рентгеновских источников удается восстановить многие макроскопические свойства нейтронных звезд – их массы, радиусы, моменты инерции. В конечном счете это налагает важные ограничения на возможное физическое состояния недр нейтронных звезд.

9.3.5. Фундамент материи: физический вакуум

и его состояния[vii]

Латинское слово materia буквально означает вещество, но в современной науке понимается значительно шире. Еще со второй половины XIX в. видом материи (наряду с веществом) считается также физическое поле. Это установлено работами М. Фарадея, Дж. К. Максвелла и Г. Герца в области электродинамики. Как уже отмечалось, подлинной субстанцией нашей Вселенной современная наука считает так называемый физический вакуум. Он принципиально не может восприниматься нашими чувствами и приборами, так как он ни от чего в нашем мире не отличается; поэтому его и называют vacuum – лат. «пустота».

В то же время, вакуум может рассматриваться как сплошная среда, которой присущи известные свойства, выражаемые рядом физических констант. П. Дирак описал вакуум как море электронов с отрицательной энергией и бесконечной плотностью, в котором постоянно происходит порождение виртуальных пар электрон-позитрон (так называемое море Дирака). Его можно представить и как поле фотонов, либо виртуальных электрон-позитронных пар. А в теориях Великого объединения предлагается рассматривать вакуум как коллективное возбуждение гипотетических хиггсовых скалярных бозонов.

Иногда физический вакуум называют третьей формой материи. Но он может быть истолкован как нулевое состояние квантованного поля, в котором средняя напряженность всех полей равна нулю. Тем не менее, активность вакуума давно доказана рядом физических экспериментов. Два важнейших результата получены еще в 1947 г. Это, во-первых, «эффект Казимира» – притяжение близко расположенных металлических пластин в вакууме. Во-вторых, это так называемый лэмбовский сдвиг – смещение энергетических уровней электрона в атоме в результате его «дрожания» на орбите под воздействием вакуума.

Дело в том, что всякое равновесие в природе имеет динамический характер, то есть, осуществляется через небольшие колебания параметров вокруг точки равновесия. Так и в физическом вакууме постоянно происходят «нулевые флуктуации» (колебания) полей различной природы. В частности, между пластинами в опыте Казимира образуется пространство с отрицательной плотностью энергии. Согласно квантовой теории поля, флуктуации полей сопровождаются порождением так называемых виртуальных частиц (принцип корпускулярно-волнового дуализма). Их действием на обычные частицы можно объяснить и лэмбовский сдвиг, и принципиальную неопределенность состояния квантовых объектов вообще. О действии вакуума на тела догадывался еще Эпикур, в IV в. до н. э. предложивший свое знаменитое «clinamen» – «самопроизвольное» отклонение атомов от движения по прямой линии.

Слово virtualis в средневековой латыни означало «возможное», а по смыслу восходит к аристотелевской оценке возможного бытия как бытия несовершенного. И сегодня виртуальное понимается именно как неполноценное бытие, вроде «виртуальной реальности» в компьютерном пространстве. То же относится к виртуальным частицам. Время их жизни ограничено соотношением неопределенностей Гейзенберга. Это величина порядка 10-43с (так называемый планковский масштаб времени), то есть в миллиарды миллиардов раз меньше, чем время жизни резонансных частиц.

Ее незначительность не позволяет зафиксировать такие частицы на опыте. Можно сказать, что они ни мгновения не существуют в ставшем виде, а существуют только в становлении, возникают и тут же исчезают, как лопнувшие мыльные пузыри. Интересно, что для них (вследствие того же соотношения неопределенностей Гейзенберга) не выполняется обычное соотношение между импульсом и энергией. Тем не менее, они успевают подействовать на другие квантовые объекты, а в некоторых случаях могут рассматриваться как переносчики взаимодействия между частицами.

Флуктуации вакуума проявляются не только в порождении виртуальных частиц, но и в спонтанных нарушениях исходной симметрии вакуума. В результате получаются состояния с наименьшей возможной энергией, при отличном от нуля значении некоторых силовых полей. Может образоваться и так называемый вакуумный конденсат – состояние с отличным от нуля вакуумным средним. Возможен непрерывный спектр таких вырожденных состояний поля, которые различаются числом (гипотетических) голдстоуновских бозонов с нулевой массой и спином.

Но это такие асимметрии, которые зиждутся на существовании исходной симметрии, и выступают только как следствия ее неустойчивости под воздействием некоторых макроскопических ситуаций. А в момент (или в пунктах) порождения Вселенной вакуум (как ныне считается) пребывает в «ложном», то есть сильно неравновесном состоянии. Оно нестабильно и кратковременно, но характеризуется большим выходом энергии. Эта энергия и проявляется в «Большом взрыве» или вздувании (инфляции) «пузырей вакуума», образующих начало нашей Вселенной. Одновременно это начало космической эволюции вещества.

9.4. Виртуальные реальности

О понимании термина «виртуальная реальность». ô Техническое содержание термина «виртуальная реальность». ô Компьютерная виртуальная реальность. ô Способы существования виртуальной реальности. ô О философии виртуальной реальности и киберпространства. Виртуальное как неметрическая форма объективного существования.

Попробуем перечислить ныне существующие истолкования понятия «виртуальная реальность»:

  1. Двусмысленность, возникающая из сочетания противоположных по смыслу слов.
  2. Средневековой смысл «бытия-в-сущности». Близость к умопостигаемому бытию.
  3. Искусственная реализация в знаково-графической форме той или иной мыслимой возможности, которая не может осуществиться естественным путём.
  4. Способ бытия системных и тотальных свойств.
  5. В физике понятие виртуальной частицы определяет её как нечто обладающее второстепенным статусом существования, неуловимое, фиксируемое лишь по косвенным данным.
  6. Истолкование термина связано с витализмом, преформизмом, идеей первопричины и Универсума.
  7. Окружающий человека мир, генерируемый его сознанием.
  8. «Трёхмерное, генерируемое компьютером, имитируемое окружение, предъявляемое пользователю в реальное время его поведения». – Психологический феномен.
  9. Креативный статус виртуальной реальности и её связь с виртуализатором – демиургом виртуальных миров.

Вхождение в употребление термина «виртуальное» свидетельствует о кризисе в области онтологии. Это свидетельство наших бурно меняющихся под напором научных открытий представлений о том, что такое реальность. Оно заставляет пересмотреть нас не только привычные понятия объективной реальности, но и само понимание объективности.

Вероятно, все вышеперечисленные толкования понятия «виртуальная реальность» имеют смысл и могут быть соответствующим образом прокомментированы. Но мы рассмотрим только наиболее близкие к естествознанию варианты понимания этого термина.

9.4.1.Значение термина «виртуальная реальность»

Virtual reality – мнимый мир, создаваемый аудиовидеосистемой в воображении пользователя. Термин виртуальная или мнимая реальность в 1984 г. был придуман Яроном Ланьером, который затем основал фирму, производящую различные устройства, необходимые для ее создания.

Синтезируется виртуальная реальность путем использования видеофильмов, в том числе мультипликации с широким применением стереофонического звука и отдельных цветных изображений. Причем, они могут быть объемными. Естественно, что для создания виртуальной реальности среди внешних устройств аудиовидеосистем обязательно должны быть экран и динамики. В отличие от действительной реальности, в которой живет пользователь, виртуальную реальность он создает и динамично изменяет сам. Для этого, пользователь воздействует на входные устройства системы: клавиатуру, микрофон, сканер, световое перо, электронную кисть, мышь.

В особых задачах, для более глубокого восприятия виртуальной реальности, используются специальные устройства. К ним, в первую очередь, относится шлем, надеваемый на голову пользователя. Он имеет два цветных экрана, расположенные перед глазами и наушники со стереозвуком. Разработаны, также, «электронные» перчатки с датчиками, которые преобразуют движение пальцев в электрические сигналы. В соответствии с ними аудиовидеосистема на экране монитора как бы передвигает или поворачивает предметы, открывает двери, выдвигает ящики и выполняет другие операции. Создан даже костюм с датчиками, преобразующий любые движения тела пользователя в сигналы системе.

Появились купола, внутри которых находятся люди, наблюдающие панорамные изображения, проецируемые на сферический экран. Здесь создается полная иллюзия трехмерного пространства. Панорамные технологии в корне изменяют ситуацию, так как позволяют работать с ней без специальных устройств (шлемов, перчаток и т. д.). При этом рассматриваемые технологии создают на экранах изображения очень высокого качества.

Панорамные технологии позволяют строить виртуальную среду, в которой можно наблюдать изображения, поворачиваясь на все 3600. Использование здесь больших экранов дает возможность рассмотреть нужные детали. В зависимости от необходимости пользователь меняет точки обзоров, как бы перемещая наблюдателя в пространстве круговой сцены.

Созданием соответствующего программного обеспечения удается получить совершенно новые эффекты воспроизведения реальной действительности либо создавать образы, которые лежат за пределами обычного видения. Например, объемное изображение мозга человека, полученное на основе томографических исследований. Благодаря такой технологии, повышается производительность труда разработчиков, становятся более эффективными процессы обучения. Для компоновки прикладных программ, описывающих части виртуальной реальности, созданы трехмерные интерфейсы, виртуальная сеть.

Одно из известных определений виртуальной реальности таково: «совокупность средств, позволяющих создать у человека иллюзию, что он находится в искусственно созданном мире, путем подмены обычного восприятия окружающей действительности (с помощью органов чувств) информацией, генерируемой компьютером».

Виртуальная реальность – это то, что позволяет перемещаться в трехмерном мире с шестью степенями свободы и обозревать его в реальном времени. Это означает, что программа задает, а аппаратура распознает шесть видов движения:

  1. Перемещение вперед – назад,
  2. Перемещение вверх – вниз,
  3. Перемещение налево – направо,
  4. Наклон вверх – вниз,
  5. Крен налево – направо;
  6. Вращение налево – направо.

Виртуальная реальность – по существу как бы имитация физической реальности. Впечатление виртуальной реальности создается взаимодействием и усиливается интерфейсом.

Создание виртуальной реальности основано на использовании имитационного моделирования, теории дистанционного управления, автоматизированного проектирования, компьютерной графики, техники взаимодействия человека с машиной. В последние 10 лет виртуальная реальность представляет собой вполне самостоятельное направление компьютерной технологии.

9.4.2. Компьютерная виртуальная реальность

Это соединение компьютерной графики с системой «человек – компьютер». Использование компьютера требует от нас изучения не столько нового языка, сколько новой культуры. Новая культура – это киберпространство. Его впервые описал в 1985 г. У. Гибсон в научно-фантастическом романе «Neuromancer» как единую, согласованную галлюцинацию миллиардов людей. Он написал о сверкающем мире, создавшем новую вселенную электронной медиации, где факты воспринимаются в своем физическом проявлении – не только слышатся и видятся, но и чувствуются.

Обычно киберпространство воспринимается через экран. Теперь, благодаря технологиям виртуальной реальности, становится возможным превратить этот двухмерный взгляд в прямое трехмерное управление реальностью. Киберпространство – это сфера информации, полученной посредством электроники. В настоящее время мы окружены океаном фактов. Их можно воспринимать не только как числовые ряды, но и как текст, образы, голос, музыку.

Идея компьютерной виртуальной реальности в том, что эти интерфейсы должны быть не просто представлением, но замещением реальности во всех смыслах; пользователь должен не просто дергать «мышь» или другое средство контроля, но поворачивать виртуальную ручку так же, как и реальную. Это не только подразумевает использование зрения и, возможно, слуха, но и затрагивает чувственное восприятие в процессе обратной связи. Более того, пользователь виртуального мира должен быть готов брать и передвигать объекты, существующие внутри этого мира, а также перемещать внутри киберпространства свое тело или его части.

Первый инструмент проникновения в виртуальную реальность дан нам от рождения – это мозг и его сенсорные рецепторы. Главным средством нашего восприятия является визуальная система. Остальные чувства помогают обрести нашему взгляду на мир полноту. У нас семь основных чувств: зрение, слух, осязание, обоняние, вкус, равновесие и ориентация. На наше восприятие влияют пересечения этих чувств, как, например, чувство движения (жеста), различающееся не только глазами, но и самим телом. Мозг интегрирует все получаемые им сигналы от всех рецепторов и сопоставляет новые данные с теми, что уже имеются в нашей памяти.

Одна из основных проблем в освоении виртуальной реальности состоит в том, чтобы эти частично совпадающие (перекрывающиеся) данные были удовлетворительны в информационном отношении. Диссонанс восприятия, когда сигналы разноречивы, может вызвать дезориентацию, растерянность и даже болезнь. Визуальные сигналы вовсе не обязательно обусловлены стереоскопическим видением. Линии перспективы, тени световых бликов, освещения и фактуры могут придать двумерной графике трехмерный вид. Современная технология виртуальной реальности – это ответвление компьютерной графики, повлиявшей на все – от составления карт до телерекламы. Компьютерная графика открывает широчайшие возможности для манипуляции трехмерными образами, но при этом требует огромных затрат энергии.

Современная технология виртуальной реальности начинается с попытки соединить визуальное восприятие с восприятием движения и звука. Ее первоначальное применение предшествует изобретению компьютера. В настоящее время виртуальная реальность отождествляется с более глубоким подходом, чреватым многими препятствиями. Требуются, как минимум, головной дисплей и перчаточное устройство (или другие средства управления виртуальными объектами). Полное погружение требует от пользователя надеть сенсорный костюм, передающий данные о движениях в компьютер.

Головной дисплей – это два очень маленьких видеомонитора, установленных так, что каждый из них находится перед соответствующим глазом; на него смотрят через специальные широкоугольные линзы. Размещение этих устройств в маске или шлеме таково, что глаза могут принимать изображение, которое мозг идентифицирует как трехмерное. Некоторые дисплеи снабжены наушниками, создающими звуковую среду. Ранние головные дисплеи были тяжелыми и неуклюжими, более поздним стремятся придать форму легкого шлема, создающего уникальный эффект присутствия в виртуальном пространстве. Другие методы, как, например, специальные электронные очки, скорость изображения в которых сопоставима с видеодисплеями, позволяют пользователям работать в реальной среде, одновременно обращаясь к изображениям в среде виртуальной.

Поиск более тесного взаимодействия с виртуальными объектами толкает на поиски средств управления ими. Создание перчаточного устройства представляет собой резкий выход за пределы привычных джойстиков, «мышей» и т.д. Оно дает пользователю возможность буквально проникать в киберпространство и изменять его. Перчатка может оценивать положение и изгиб каждого пальца. Это обеспечивается использованием особых оптико-волоконных нитей, фиксирующих количество света, проходящего через каждую нить, или, напротив, измеряющих переменное электрическое напряжение в цепи.

Еще один важный элемент системы погружения – это устройство слежения за положением, создающее классическую декартову трехосную систему. Это устройство может работать с помощью либо электромагнитного поля, либо ультразвуковых или инфракрасных лучей. При использовании электромагнитных полей фиксатор позиции получает последовательные сигналы о положении относительно трех декартовых осей. Это дает пользователю так называемые шесть степеней свободы. Лучевые фиксаторы для определения позиции используют простые волны в пределах прямой видимости и тригонометрические исчисления. Одно устройство слежения контролирует движение головного дисплея, а другое – каждую перчатку или иную часть тела, которую пользователь сочтет нужным поместить в киберпространство. У каждого из этих устройств, однако, есть жесткие пределы эффективности.

9.4.3. Способы существования виртуальной

реальности

Наиболее очевидным путем развития виртуальной реальности является индустрия развлечений. Такие пассивные масс-медиа, как кино и ТВ, уже постепенно вытесняются примитивными интерактивными формами. Только за 1992 год доход от первого проката кинокартин по всему миру составил около 5 миллиардов долларов, тогда как продажа видеоигр интерактивного характера дала прибыль в 7 миллиардов. В настоящее время на рынке немало и того, что можно назвать «пассивными» или околовиртуальными играми. Как правило, это отростки военной технологии летных тренажеров: они-то и составили быстрее всего растущую часть индустрии развлечений.

Сравнительно недавно предложены концепции виртуальных библиотек и музеев. В качестве доступа к книгам и другой печатной продукции библиотеки будет использоваться телеприсутствие. Пользователь сможет перемещаться внутри визуального изображения книжных полок, находить то, что ему нужно, и сразу погружаться в чтение, а при наличии разрешения делать копии.

Концепция виртуального музея слегка иная. Смитсоновский музей в Вашингтоне располагает коллекцией более чем в миллиард единиц хранения. Одномоментно в нем может быть выставлено не более двух процентов от общего числа экспонатов. Виртуальный музей даст пользователям возможность увидеть любой экспонат коллекции в его натуральном, трехмерном виде, а также, в идеале, все тематически связанные с ним экспонаты и материалы. Однако эта концепция, предполагающая полное погружение, требует дисплеев более высокой разрешающей способности, чем те, которые пока нам доступны.

Наконец, большое применение виртуальная реальность находит и найдет в бизнесе: при обработке информации, оценке оптимальной цены и рынка сбыта, уменьшения себестоимости товара и т. п. Все процессы бизнеса объединяются в одну информационную сеть, ключ к которой – у шефа компании по информации.

Каковы же перспективы виртуальной реальности? Предпочтительная метафора для новой парадигмы нам знакома – это театр, искусство, заставляющее поверить в свою правдивость. «В киберпространстве в рамках театральной парадигмы, – пишет Р. Уолсер, – у зрителей всегда есть виртуальные тела, и они всегда играют роли виртуальных существ, именуемых характерами. Попав в киберпространство, вы каким-то образом становитесь связанными с виртуальным телом, которое вы контролируете посредством движений вашего физического тела. Роль характера играет интеллект – человеческая или искусственная программа понимания».

Другой исследователь, Г. Фольц, пишет о новом способе раздела мира путем распределения его ценностей. Он предвидит создание «киберкланов» – избранных групп людей, всей своей жизнью включенных в киберпространство.

Доктор У. Брикен из ХИТ-Лаборатории озабочен отсутствием строгой терминологической базы в исследованиях по философии виртуальной реальности. Если подходить к этому вопросу строго, то виртуальная реальность вряд ли будет когда-либо сильно походить на реальный мир. Человеческое воображение стремится не повторить этот мир, а заполнить его лакуны (пустоты). Подобно другим ученым, У. Брикен сформулировал свои правила виртуальной реальности:

  • Психология – физика виртуальной реальности.
  • Наше тело – интерфейс.
  • Знание – это эксперимент.
  • Факт – это среда.
  • Пространство и время подлежат изучению.
  • Реализм необязателен.

9.4.4. О философии виртуальной реальности и

киберпространства

Такие современные философы, как Нельсон Гудмэн и Ричард Рорти, считают все миры – не только мир рассказов и фильмов – возможными символическими конструктами. Наука, религия и искусство предлагают свои версии миров, которые по-разному создаются, проверяются и усваиваются, – каждую версию со своей функцией и степенью правильности. Каждый мир создается из предыдущего мира, и всякий процесс «миротворения» идет путем композиции или декомпозиции предыдущего материала, повторений или создания новых моделей, путем вычеркивания и дополнений, путем организации и упорядочивания различных аспектов этого мира.

После И. Канта, философия постепенно двигалась от идеи уникальной реальности единственного неизменного мира к идее множества миров. Кант поместил основные формы внешнего мира в человеческое сознание. Категории рассудка (причинность и материя) вместе с формами чувственного созерцания (пространство и время) упорядочивают хаотические данные чувственного восприятия, отливая опыт в умопостигаемую и коммуникабельную структуру. Но и Кант, чтобы упорядочить наше представление о мире, исходил из идеала его единства.

Философы после Канта всё настойчивей подвергали сомнению идею единства мира. В ХХ столетии квантовая теория лишила науку той связности, которую Кант считал для науки существенной. Теперь, когда наука открыта множественности и неопределенности, многие философы приветствуют множественность мира. Например, в наши дни Н. Гудмэн говорит: «Наше пристрастие к одному миру удовлетворяется в разное время и в разных целях множеством различных способов. Не только движение, происхождение, вес, порядок, но даже сама реальность относительна». «Пути творения мира» Гудмэна, в которых он выдвигает учение об ирреализме, могут стать для творцов виртуальной реальности букварем.

Реализм и ирреализм одинаково нереалистичны в виртуальной реальности. Причём у ирреализма может оказаться короткое дыхание. Возможно, нам понадобится опереться на понятие реального мира – пусть не из абстрактных убеждений, но, по крайней мере, из-за препятствий, чинимых нашим системам виртуальной реальности реальностью объективной. Необузданное умножение миров взывает к здравому смыслу, к связи с реальностью, наконец, к метафизическому обоснованию. Кант отбросил метафизические теории как пустые софизмы и интеллектуальные игры. Философы ХХ столетия от Витгенштейна и Хайдеггера до Карнапа и Айера в вытеснении метафизики последовали примеру Канта, считая ее либо пустым вращением языковых колес, либо поиском следов призраков, либо просто логической ошибкой. Для этой линии мышления реальность как серьезное понятие потеряла свое значение. Будущие ВР- технологии могут привести к изменениям в этой общей мыслительной направленности и бросить на классическую метафизику новый свет. Следующее столетие может снова углубиться в древнюю область метафизики, раскопанную орудиями смоделированной компьютером виртуальной реальности, метафизической машиной. И, напротив, виртуальные реальности могут обогатиться, сохраняя с реальным миром некоторые отношения, но, не становясь скучными или приземленными.

«Виртуальный» в «виртуальной реальности» восходит к лингвистическому разграничению, сформулированному в средневековой Европе логиком Дунсом Скотом. Его латинское virtus было главным пунктом его теории реальности. Он настаивал на том, что понятие вещи содержит в себе эмпирические атрибуты не формально (как если бы вещь существовала отдельно от эмпирических наблюдений), но виртуально. Хотя для понимания свойств вещи нам может понадобиться углубиться в наш опыт, продолжает Скот, сама реальная вещь уже содержит в своем единстве множество эмпирических качеств, но содержит виртуально – в противном случае все они не закрепились бы как качества этой вещи. Термин «виртуальный» Скот использовал для того, чтобы преодолеть пропасть между формально единой реальностью (предполагаемой нашими концептуальными ожиданиями) и нашим неупорядоченно разнообразным опытом. Сходным образом в наши дни мы используем термин «виртуальный», чтобы пробить брешь между данной нам средой и будущим уровнем достижимой человеческой деятельности. Виртуальное пространство – как противоположность естественному физическому пространству – содержит информационный эквивалент вещей. Виртуальное пространство заставляет нас чувствовать, будто бы мы имеем дело прямо с физической реальностью.

Виртуальный мир должен быть не вполне реальным, иначе он перестанет будить воображение. «Нечто-не-вполне-реальное» стимулирует силу нашего воображения и представления. Воображение позволяет нам взять то, что мы читаем или слышим, и перевести символические компоненты в духовное зрение. Это видение выходит за пределы нашей физической реальности, так что с точки зрения телесного существования воображение – это бегство даже притом, что воображение часто вносит в нашу жизнь новые факторы, которые иногда побуждают нас изменить реальные условия.

Киберпространство также пробуждает наше восприятие. Киберпространство – это большая электронная сеть, в которой свернуты виртуальные реальности. Виртуальная реальность – только один из многих типов явлений внутри электронного пространства. Подобно всякому медиуму, киберпространство вовлекает в общение. В структуре сегодняшнего мира киберпространство – это набор ориентированных точек, по которым мы находим наш путь среди невероятного количества информации.

Как можно сохранить контраст между виртуальным и реальным мирами? Как могут виртуальные реальности сохранить присущий им контраст с реальностью настоящей – так, чтобы у нас оставался метафизический стимул к творчеству и активному использованию нашего воображения в киберпространстве? Какой якорь удержит виртуальные миры в виртуальности. Следует указать на некоторые экзистенциальные аспекты реального мира, позволяющие предотвратить уплощение мира виртуального. Эти экзистенциальные свойства, вытекающие из философии ХХ века, остаются открытыми для обсуждения. Виртуальные миры будят воображение только в том случае, если они не просто воспроизводят существующие свойства реальности, но преобразуют их, выводя за рамки простого распознавания. К таким чертам реального мира следует отнести:

  • смерть и рождение;
  • переходы между прошлым и будущим;
  • тревогу.

Экзистенциально осмысляемый реальный мир функционирует, имея в себе встроенные рамки. Эти рамки задают параметры значению человека. Один из этих параметров, неизбежность нашей смерти, маркирует человеческое существование как конечное. Из-за ограниченности жизни мы делим наши жизни на периоды подобно тому, как расписываем порядок работы. Мы рождены в определенное время и растем внутри различных взаимодействий (родственные отношения). Эти рамки накладывают на реальность экзистенциальные параметры, давая нам почувствовать нашу укорененность на земле (отдельной планете с хрупкими экосистемами). Смерть и рождение принадлежат к якорям реальности.

Другая рамка реальности – темпоральность (временность), предопределенный переход событий из прошлого в будущее, в нашу память или историю. В принципе невозможно стереть ничего из того, что произошло с нами за время жизни. Это свойство переноса отличает реальность от любого преходящего развлечения или мгновенной галлюцинации. Наконец, в силу временного характера форм биологической жизни наш реальный мир пронизан чувством хрупкости и ненадежности, часто обманывает наши ожидания. Возможность физического ущерба в реальном мире придает нам подчеркнутую серьезность, острота которой скрывается за случайными фразами типа: «Будь внимателен». Мы беспокоимся, потому что хрупки. Человеческое существование и отмечено этими тремя свойствами, которые придают нашему опыту разные степени реальности. Они нас привязывают.

В таком случае должны ли искусственные миры быть свободными от смерти, боли, раздражителей? Отказ от этих ограничителей может лишить виртуальность какой бы то ни было степени реальности. Однако просто встроить их, как иногда делает литература, значит, получить поверх реального мира пустое зеркало, простое отображение, к которому мы привязаны. Настоящее киберпространство должно делать большее – будить воображение, а не повторять мир. Виртуальная реальность могла бы стать местом отображения, но отображение должно порождать философию, а не избыточность. «Философия, – сказал У. Джеймс, – это привычка всегда видеть альтернативу». Киберпространство может содержать много чередующихся миров, но альтернативность другого мира сосредоточена в его способности пробуждать в нас другие мысли и чувства.

При взгляде вперед нам открывается прекрасная возможность для исследования, в том числе исследования самих себя. Что такое для нас реальность? К чему мы можем привыкнуть? Восприятие будет изучаться скорее как часть активного, нежели пассивного, поведения. Коммуникация будет изучаться постольку, поскольку становится возможным уловить все, что происходит между двумя людьми.

9.5. Поиск внеземных цивилизаций

О возможности существования жизни и разума во Вселенной. ô О возможности информационного контакта с внеземными цивилизациями. ô О возможных формах технологической активности разума во Вселенной. «Космокреатика». Проблема скрытого вещества. ô Роль астрономии и астрофизики в обнаружении разумной деятельности во Вселенной.

Нашему миру около 5 млрд. лет, а нашей технической цивилизации всего лишь примерно 100 лет. Первые звёзды нашей Галактики сформировались около 10 млрд. лет назад и, хотя на их планетах ещё не было необходимых для цветущей жизни тяжёлых элементов, у этих звёзд было достаточно времени, чтобы пройти свой жизненный цикл и выбросить в космос синтезированные элементы. Из них за миллионы и миллиарды лет до Солнца образовались звёзды второго поколения. Если рядом с одной из них появилась жизнь, то она могла развиваться длительное время, ещё до образования нашей планеты и сегодня цивилизация на ней может быть на миллионы и миллиарды лет старше нашей. Если развитые цивилизации действительно существуют, вполне вероятно, что они точно так же, как и мы, стремятся найти другой разум и связаться с ним[viii].

9.5.1. О возможности существования жизни

и разума во Вселенной

Достижения астрономии приблизили нас к пониманию эволюции всех объектов Вселенной от момента Большого Взрыва до настоящего времени. Но вот поиск внеземных цивилизаций (ВЦ) пока не дал положительных результатов. В чем причина неудач? Для примера назовём некоторые из них:

  1. Первая связана с «земным шовинизмом»: большая часть целенаправленных экспериментов предполагает поиски цивилизаций, подобных нашей в XX веке. Но найти такую цивилизацию – событие крайне маловероятное.
  2. Вторая проблема – невозможность описания возникновения и эволюции цивилизаций на космически значимых интервалах времени. В связи с этим предлагаем принять как аксиому: существует ненулевая вероятность возникновения жизни во Вселенной, и нет принципиальных причин, ограничивающих уровень ее развития.
  3. Третья проблема. Мы слишком переоцениваем наши знания о строении Вселенной, возможно, бесконечной в пространстве и во времени и в многообразии форм и законов. Достаточно вспомнить, что современная астрономия изучает лишь менее 5% средней плотности окружающей нас материи, а более 95% составляет скрытая масса, проявляющаяся только по ее гравитационному воздействию. Скрытая материя, возможно, составляет основную долю массы нашей и других галактик и доминирует в межгалактическом пространстве, а ее исследование – важнейшая нерешенная проблема современной астрономии.

Сегодня, рассуждая о возможности существования жизни и разума во Вселенной, мы основываемся исключительно на умозрительных предположениях, в лучшем случае логически экстраполирующих закономерности нашего общественного развития на развитие возможных внеземных обществ. Одним из многих примеров может служить гипотеза В. С. Троицкого, изображающая в схематическом виде эволюционное развитие Вселенной. Оно начинается с элементарных частиц. Потом возникают ядра, атомы, молекулы, макромолекулы, микробы, колонии микробов, организм, социальные структуры. Последние могут образовывать в своем развитии планетные экосистемы, околосолнечные сообщества, галактические цивилизации. Этот ученый описывает глобальную эволюцию Вселенной, следующим образом:

  • Жизнь во Вселенной возникает непрерывно, начиная с образования звезд второго поколения, то есть примерно в течение последних двенадцати миллиардов лет.
  • Внеземные космические цивилизации возникают эволюционным путем непрерывно последние восемь миллиардов лет.
  • Существует закон неограниченной экспансии разумной жизни, то есть стремление исследовать и занять максимальное пространство.
  • Цивилизации достигают уровня, при котором возможна практически неограниченная скорость непрерывного производства энергии.

Первое положение основывается на молчаливо принятом мнении, что жизнь возникает непрерывно по мере достижения определенной организации материи во Вселенной. Начало этого процесса после Большого взрыва определяется сроками синтеза всего набора тяжелых элементов, образования звезд и планет.

После этого начинается эволюционное развитие форм жизни около каждой из звезд, где она возникала, от клетки до технологической цивилизации, на что на Земле ушло около 4 миллиардов лет. Принимая этот срок за некоторую среднюю оценку, необходимую для возникновения разума и цивилизации, автор получает второе положение, которое, очевидно, является переносом земного опыта на всю Вселенную. Это может быть основано только на убеждении, что законы эволюции живого, установленные эволюционной биологией, являются универсальными и действуют во всей Вселенной.

Попытки системного представления идей универсальной эволюции мирового целого выражаются и в создании формул для оценки числа внеземных цивилизаций, существующих в нашей Галактике. Простейшая из них, предложенная Ф. Дрейком, служит рабочей гипотезой для всех расчетов обитаемых миров Вселенной. Она опирается на следующие, схематически представленные предположения, которые выступают в формуле в виде сомножителей:

  • Во Вселенной существуют планеты, пригодные для возникновения жизни.
  • На некоторых из этих планет возникла жизнь.
  • На каких-то планетах появились разумные общественные существа.
  • Некоторые общества этих существ развили науку и технику до уровня, позволяющего установить межзвездную радиосвязь.
  • И пытаются это сделать.
  • Таких обществ «достаточно» много, чтобы эксперименты по межзвездной связи имели смысл.

Считается, что по формуле Дрейка можно оценить вероятность возможности развития разума во Вселенной или возможности развития фазы общественных отношений, обеспечивающих межзвездную связь. Основой суждений, подлежащих формализации, здесь служат представления о типичности процессов усложнения материи в их движении в направлении разума и технологического общества.

Такое понимание ситуации оставляет открытыми много вопросов. Среди них вопросом первостепенной важности является проблема естественнонаучного обоснования глобального эволюционизма.

Дело в том, что образование представлений об общем процессе направленного развития только на Земле (которое привело здесь к возникновению жизни и разума) сопровождается включением большого числа непроверенных, гипотетических моментов во многих существенных звеньях этой линии. Особенно велик элемент недоказуемого в представлениях о существовании и способах функционирования в космосе высших форм движения материи – биологической и социальной (которые являются необходимой составляющей представлений о глобальном эволюционизме).

Это отчетливо видно из различия в оценках значения величин сомножителей формулы Дрейка, введенной для определения численной вероятности существования внеземных цивилизаций. Каждый из этих сомножителей отражает определенный узловой момент в развитии материи; возникновение планет вокруг звезды, зарождение жизни на планетах, возникновение разума на Земле и на других телах Вселенной, появление технологического общества и т. д.

Л. М. Гиндилис показывает, что элемент гипотетического при включении в глобальный эволюционизм высших форм движения материи последовательно возрастает. В настоящее время можно более или менее надежно определить только величину, определяющую долю звезд, имеющих планетные системы, основываясь на изучении скорости вращения звезд различных спектральных классов; на анализе распространенности двойных и кратных систем; на наличии невидимых спутников звезд; на представлениях звездной и планетной космогонии.

Согласно этим оценкам, не менее 10%, а может быть подавляющее большинство звезд Галактики, имеют планетные системы. Это положение, конечно, нельзя считать строго доказанным, тем не менее, оно представляется достаточно обоснованным совокупностью многих данных.

Определение доли звездных систем, имеющих планеты пригодные для возникновения жизни, сопряжено уже с гораздо более серьезными трудностями. Обычно при ее оценке, прежде всего, исключаются горячие молодые звезды ранних спектральных классов. Помимо ограничений, связанных со спектральным классом звезды, существуют ограничения для размера планетных орбит (орбита должна находиться внутри «зоны жизни», определяемой температурными условиями), при которых может активно функционировать известная нам белковая форма жизни; ограничения для радиуса и массы планеты, скорости ее вращения и т. д.

Однако для оценки этой величины, надо знать не только какие условия существуют на других планетах, но и какие условия необходимы для возникновения и развития жизни. Эти представления содержат еще больший элемент неопределенности. Исчисление же доли планет, на которых действительно существует жизнь, еще более сложно. Это вопрос о том, в какой степени возникновение жизни можно считать закономерным процессом. Многие специалисты, занимающиеся изучением происхождения жизни на Земле, полагают, что хотя образованию живого из неживого сопутствовала масса случайностей, в целом этот процесс статистически закономерен.

За длительный период времени жизнь неизбежно должна возникнуть на любой планете с подходящими условиями. Время возникновения жизни должно быть меньше времени существования планет. Незначительное отличие физических условий на других планетах по сравнению с земными условиями может увеличить срок химической эволюции на 1-2 порядка. В этом случае для зарождения жизни потребуется время большее, чем возраст Вселенной. Но поскольку нам ничего не известно о сроках химической эволюции на других планетах, мы не можем сказать ничего определенного и о вероятности происхождения жизни на планете с подходящими условиями.

Значение других сомножителей – доли планет, населенных разумными существами, доли планет, на которых разумная жизнь достигает фазы технологической цивилизации, а также длительности существования технически развитой цивилизации – вызывает противоречивые оценки. Задача определения их связана с огромным числом допущений, выходящих за рамки научного знания. Не ясно, например, насколько закономерен процесс эволюции, приведший к образованию разумной жизни на Земле, поскольку по мере усложнения организмов пути эволюции разветвляются и, по-видимому, только некоторые из них ведут к появлению разума.

На основе всего этого можно согласиться с Л. М. Гинделисом, что сам тезис о существовании внеземных цивилизаций точно также недоказуем сегодня, как и альтернативный ему тезис об уникальности земного разума.

Ещё один важный момент связан с тем, что всё вышесказанное относится к привычной для нас форме жизни, основанной на углероде. Хотя нам до сих пор известна лишь земная белково-нуклеиново-водная жизнь, это не означает, что в безграничном космосе не могут существовать другие её формы. Некоторые ученые, например, Г. Файнберг и Р. Шапиро, моделируют такие гипотетически возможные варианты жизни как:

  • плазмоиды – жизнь в звездных атмосферах за счет магнитных сил, связанных с группами подвижных электрических зарядов;
  • радиобы — жизнь в межзвездных облаках на основе агрегатов атомов, которые находятся в разных состояниях возбуждения;
  • лавобы — жизнь на основе соединений кремния, который может существовать в озерах расплавленной лавы на очень горячих планетах;
  • водоробы — жизнь, которая может существовать при низких температурах на планетах, покрытых «водоемами» из жидкого метана, и черпать энергию из преобразований ортоводорода на параводород;
  • термофаги — разновидность космической жизни, которые получают энергию из градиента температур в атмосфере или океанах планет.

Конечно, такие экзотические, на наш взгляд, формы жизни пока что существуют лишь в воображении ученых и писателей-фантастов. Тем не менее, не исключена возможность реального существования некоторых из этих форм, например, плазмоидов. Во всяком случае ничто не запрещает нам считать, что где-то в космосе или даже на Земле параллельно с «нашей» формой жизни существует другая её разновидность, похожая, например, на упомянутых плазмоидов. Если уж идти дальше в этом направлении, то к проявлениям их активности можно отнести некоторые виды НЛО (неопознанных летающих объектов), образования, похожие на шаровые молнии, а также невидимые для глаза, но фиксируемые цветной фотопленкой летающие в атмосфере энергетические «сгустки». Разумеется, пока это не более чем ни на чём не основанные предположения.

9.5.2. О возможности информационного контакта с внеземными цивилизациями

Любая связь предполагает обмен информацией посредством каких- либо посредников. При непосредственном контакте достаточно ясно как общаться, а вот при связи на некотором удалении… Так, например когда мы разговариваем по телефону, информация передается за счет изменяемого значения электрического напряжения определенным образом оговоренного заранее. То же самое происходит, когда мы слушаем радио или смотрим телевизор, только носителем информации здесь выступают радиоволны. Хотя на первый взгляд все просто, снял трубку, набрал номер и говори, но при этом мы забываем, что существует множество телефонных станций, операторов и т. д. Вся система связи была кем-то заранее разработана, принята определенная система кодирования сигналов, которая должна быть одинакова у всех абонентов, иначе не будет связи. Кстати в разных странах системы различны, поэтому если вы купите телефонный аппарат, предназначенный для другой страны, то он может и не работать у нас и наоборот. При этом не следует думать, что какая-то система связи лучше, а какая-то хуже, они просто разные.

Если мы попытаемся установить радиосвязь с внеземными цивилизациями, то, даже настроившись на одну волну, мы вряд ли сможем понять друг друга, например, из-за разного типа модуляции сигналов. Ведь у нас нет возможности заранее договориться о типе связи. В связи с этим возникают следующие вопросы:

  1. каким будет носитель связи (радио, свет, космический зонд…);
  2. тип модуляции сигнала (иными словами способ передачи информации).

Вообще-то эти два вопроса довольно тесно связаны между собой, и не всегда их можно рассматривать по отдельности.

Рассмотрим традиционную радиосвязь. Для этого потребуется большая мощность радиопередатчика. Большие радиотелескопы, существующие сегодня, позволяют посылать направленный сигнал такой мощности, что если на близлежащих звездах имеется технически развитая цивилизация, то она сможет принять эти сигналы и распознать их искусственное происхождение. Итак, передатчик радиосигналов подходящей мощности есть.

Каким же должен быть сигнал? Видимо таким, чтобы инопланетная цивилизация при получении его однозначно могла определить искусственное происхождение сигнала. При этом необходимо, чтобы этот сигнал вообще был обнаружен, то есть он должен обладать каким-то качеством, которое заставило бы обратить на него внимание. Например, можно использовать определённую периодичность и т. д.

  • Для того чтобы связь была установлена необходимо:
  • во-первых, чтобы уровень развития внеземной цивилизации был не ниже нашего;
  • во-вторых, чтобы во время прихода сигнала инопланетяне осуществляли радиопрослушивание нашей солнечной системы, да еще на той частоте на которой мы ведем передачу;
  • в-третьих, невозможно вести длительную передачу сигналов, так как из-за высокой мощности передатчика это опасно для окружающих и требует больших энергозатрат, а, следовательно, и больших финансовых вложений;
  • в-четвертых, непонятно в направлении какой звезды надо осуществлять передачу, а ведение передачи одновременно по нескольким направлениям пока технически невозможно (из-за недостаточной мощности передатчика).

При этом следует иметь в виду, что длительность даже самого короткого сигнала должна составить несколько часов, иначе сама попытка не имеет смысла. Это связано с особенностью обнаружения и приема сигнала на больших расстояниях в условиях сильных помех. Помехи для радиосвязи обусловлены мощным излучением нашего солнца и электромагнитными полями в межзвездном пространстве.

Кроме того, неизвестно на какой волне нужно вести передачу, чтобы ее можно было обнаружить. Технически приемлемой может быть одна частота, а логически следует использовать какие-то другие частоты (например, частоту спектра водорода – 21см). Если вести передачу в широкой полосе частот, то это потребует больших энергозатрат. Поэтому нам пока остается только вести радиопрослушивание, в надежде обнаружить сигнал от других цивилизаций. Следует отметить, что подобные эксперименты по радиопрослушиванию ставились уже 30 лет назад и пока не увенчались успехом.

Существуют различные предположения о попытках установления дальней связи. В соответствии с некоторыми из них несколько необычные излучения некоторых звезд можно представить как такую попытку. Но их можно объяснить и вполне естественными причинами. Например, периодичностью в излучении звезд или наличием в спектре излучения спектров редких материалов. В частности источник радиоизлучения СТА-102 является переменным во времени с периодом примерно полгода вдобавок его спектр излучения и спектр излучения источника СТА-21 похожи на спектры излучения искусственного характера. Однако впоследствии эти источники были идентифицированы как квазары, что объяснило их «ненормальное» излучение естественными причинами.

Другой способ связи это использование сверхмощных лазеров. Здесь трудностей еще больше: такой сигнал труднее обнаружить на фоне излучения звезды; необходима точная направленность даже не на звезду, а на планету; по техническим причинам необходима установка лазеров за пределами атмосферы; требуются высоко мощные источники излучения и прочее. Технически этот способ сегодня еще менее приемлем, чем радиосвязь.

Еще одна идея – (разумеется, фантастическая) использовать в качестве передатчика наше Солнце. Например, сбросить на Солнце многие миллионы тонн какого – либо редкого вещества, горение которого изменит спектр Солнца. Или построить вокруг Солнца сплошную сферу из вещества с переменной прозрачностью. Меняя прозрачность можно изменить мощность и спектр излучения в межзвездное пространство. Таким образом, можно даже вести кодированную передачу информации. На сегодняшний день эти идеи практически невыполнимы, но у них есть очень интересная особенность- передача информации будет происходить сразу по всем направлениям и на довольно большое расстояние.

Другая идея – это общение при помощи космических зондов. Запущенный с Земли зонд через несколько десятков или сотен лет способен достичь близлежащих звезд, там он должен выйти на постоянную орбиту вокруг звезды и проинформировать о своем присутствии: например подачей радиосигналов, или иным, более сложным способом. Впоследствии зонд либо сам передаст информацию на планету о том, откуда он прилетел и о землянах, либо инопланетяне сами доберутся до этого зонда и получат информацию о нашей Солнечной системе.

Определённую пользу в понимании технологии контакта с внеземными цивилизациями может оказать интенсивное исследование различных древних земных цивилизаций, с особой активностью проводившееся на протяжении последнего столетия на нашей планете. Оно наглядно продемонстрировало их существенное многообразие, значительную вариантность по целому ряду как ключевых, так и факультативных характеристик. Осознанная в процессе этих исследований принципиальная возможность существования культур, коренным образом различающихся между собой как по содержанию, так и по принципам и формам организации, не может не оказать благотворного влияния на изыскания в сфере контактов с внеземными цивилизациями. Эти исследования существенно расширяют спектр эвристических подходов, избавляют исследователя от искусственных ограничителей, диктуемых ожиданием подобия уже известным прецедентам.

Однако следует иметь в виду, что сопоставление различных человеческих культур между собой, с одной стороны, и какой-либо земной культуры или совокупности подобных культур с гипотетической внеземной цивилизацией, с другой, есть исследовательские процедуры, во многом между собой несходные. При всем многообразии человеческих культур прошлого они обладают определенным единством, порожденным единой психофизической природой их создателей. Кроме того, необходимо учитывать различие информационного потенциала культурных объектов, сопоставляемых между собой в каждом из названных случаев.

Любая земная культура – даже в случае минимального нашего с ней знакомства – предъявлена нам в определенной динамике, позволяющей реконструировать ее жизнь, а, следовательно – и характер, тогда как единичное столкновение с гипотетической внеземной цивилизацией являет нам эту динамику предельно скудно. Даже задача различения природных и искусственных (культурных) объектов требует зачастую наличия развернутого контекста; в противном случае возможны неправильные интерпретации даже в рамках земных культур, чему существуют хорошо известные примеры. Имеется и ряд иных сходных проблем[ix].

Все сказанное заставляет с осторожностью подходить к оценке эвристического значения опыта исследования земных культур в деле поисков внеземных цивилизаций, хотя вовсе исключить его значение, разумеется, нельзя.

В заключение, в качестве оптимистического прогноза возможности контакта с внеземными цивилизациями обратимся к мнению известного американского исследователя в этой области Марвина Минского, который считает, что контакт принципиально возможен, так как мы и они должны мыслить одинаково. Он подкрепляет это утверждение следующими логическими доводами:

  • Решение всех интеллектуальных задач зависит от одних и тех же факторов: времени, пространства и используемых материалов.
  • Чтобы эффективно действовать в рамках этих ограничений, необходимо научиться формировать представления о ситуации и оперировать этими понятиями.
  • Свойства любого интеллекта должны быть основаны на универсальных принципах: а/ экономность мышления; б/ уникальность простых идей.

9.5.3. О возможных формах технологической

активности разума во Вселенной

Жизнь и разум, будучи важными атрибутами материи, могут быть существенным и при том не только пассивным, но и активным фактором эволюции космоса. В концепции биосферы и ноосферы это выражается в планетарных масштабах. Но и здесь уже намечается переход к следующей ступени. Подтверждение этому можно видеть в изменении глобальных характеристик Земли, как космического тела (например, по уровню радиоизлучения) и в первых попытках освоения Солнечной системы.

Идея вмешательства высокоразвитых цивилизаций в эволюцию космоса была развита уже К. Э. Циолковским. Он считал, что высокоразвитые внеземные цивилизации, освоившие наблюдаемую нами область Вселенной, в широких масштабах воздействуют на ход природных процессов. По выражению Е. Т. Фаддеева, они «могут сознательно и по-новому организовывать материю, регулировать ход естественных событий». Сходных взглядов придерживался и известный американский астроном О. Струве. По его мнению, наука в середине XX века достигла уже такого уровня в изучении Вселенной, когда, «наряду с классическими законами физики, необходимо принимать во внимание деятельность разумных существ». Н. С. Кардашев, в связи с проблемой поиска внеземных цивилизаций, высказал мысль о том, что расширение наблюдаемой области Вселенной может быть «результатом сознательной деятельности суперцивилизаций»[x]. Во всяком случае, ничто не запрещает нам делать и принимать во внимание подобные предположения.

В современных моделях эволюции космических цивилизаций рассматриваются различные варианты «космокреатики», под которой подразумевается деятельность внеземного разума, направленная на «фундаментальную перестройку структуры материального мира, включая, быть может, изменение его пространственно-временных свойств и некоторых основных законов». Ряд вариантов космокреатики (космогоническое конструирование, создание миров, конструирование законов природы) рассмотрены известным писателем-фантастом С. Лемом в «Сумме технологий». Л. В. Лесков указал на принципиальную возможность воздействия на другую метагалактику через микроскопическую горловину фридмона, а также путем воздействия на фридмон в целом с помощью ускорителей элементарных частиц. Им же рассмотрены модели эволюции, основанные на интеграционных процессах и приводящие к объединению космических цивилизаций, к образованию Метацивилизаций, а также – еще более высоких структур.

Технологическая активность человека в космосе, конечно, не сравнима с гипотетической активностью высокоразвитых внеземных цивилизаций, но, тем не менее, человечество уже делает первые шаги в этом направлении. Европейское космическое агентство в 1995 г. запустило на орбиту инфракрасный телескоп «ISO». Телескоп показал, что примерно у половины звёзд есть планеты, а в космосе – в любой его части – много водяных паров. Это означает: жизнь в нашей Вселенной явление вполне вероятное.

Эти и многие другие удивительные открытия стали возможны благодаря практически только что начавшимся исследованиям Вселенной в инфракрасном и субмиллиметровом диапазоне. Именно в нём сосредоточена основная часть излучения Вселенной. Инфракрасный спектр излучения характеризуется очень низкой температурой, что-то около –2000 по Цельсию. Определить столь низкую температуру можно прибором охлаждённым ещё сильнее. Поэтому приёмники низкотемпературных излучений охлаждают жидким гелием до -2710 С. По такому принципу были построены инфракрасные спутники-телескопы: первый «IRAS», а затем «ISO» Вне этих приборов в межпланетном пространстве гораздо «теплее».

Благодаря этим технологиям было, например, сделано следующее удивительное открытие. Облака молекул и пыли, которые протянулись в космосе на сотни световых лет, астрономы считают инкубаторами звёзд. Но долго было непонятно, почему первоначальное сгущение в этом облаке имеет шанс превратиться в звезду, хотя из расчётов следовало, что по мере превращения сгущения в раскалённый шар и соответствующего нагрева окружающего газа этот шар должен был бы остыть. Но оказалось, что в межзвёздных тучах медленно плывущих в Млечном пути сосредоточены огромные массы водяного пара. В них непрерывно соединяются водород и кислород в молекулы воды за счёт энергии звёздного излучения. Присутствие водяных паров, о которых раньше не было известно, меняет всё. Водяной пар способствует охлаждению газа, он не разлетается и способствует увеличению массы будущей звезды до возникновения в ней термоядерных реакций. Например, около созвездия Ориона обнаружено облако, которое за один день производит из водорода и кислорода столько воды, что ею можно заполнить все моря и океаны Земли 60 раз. Вода, как известно, – это жизнь…

Другая область исследований, еще более трудная, но еще более важная в связи с поиском ВЦ: современная космология, в частности модели хаотически возникающих мини-Вселенных в разных частях и в разное время, открывают возможность существования ВЦ сколь угодно высокого уровня развития. В связи с этим возникает вопрос: есть ли возможность исследовать другие мини-Вселенные?

Современная физика элементарных частиц принимает в качестве гипотетического фундамента симметрию между правым и левым: каждая элементарная частица имеет зеркальный аналог, то есть могут быть зеркальные электроны, позитроны, протоны, нейтроны, мезоны, нейтрино, фотоны, глюоны, кварки и др. – все виды известных частиц.

«Наши» частицы могут взаимодействовать с зеркальными частицами, по-видимому, только гравитационно. Из этих частиц могут быть образованы зеркальные атомы, звезды с планетными системами, галактики и их скопления. Не исключено, что где-то там существуют и внеземные цивилизации. В зеркальной Вселенной должен быть свой, невидимый для нас, спектр электромагнитного излучения.

Предположим, что значительная часть скрытой массы является зеркальным веществом. Если принять, в соответствии с наблюдениями, что в нашей Вселенной 70% плотности составляет однородная среда (например, вакуум), а 5% – нормальное наблюдаемое вещество, то зеркальное нормальное вещество может составлять от 5 до 25%. Нижняя граница соответствует модели, когда плотности нормальной и зеркальной материи одинаковы и соответственно эволюция Вселенной идет одинаково. Верхняя граница плотности зеркальной материи предполагает большую плотность в зеркальном мире. В этом случае количество тяжелых элементов в зеркальном мире будет больше, а момент рекомбинации, образование астрономических объектов и возникновение цивилизаций могут произойти раньше, чем в нашем мире.

Объекты из зеркальной материи могут располагаться в отдельных районах пространства или быть перемешаны с нормальной материей. Вопросы о возможном пространственном разделении нашего и зеркального вещества, так же как и существование зеркальных объектов внутри Земли, Солнца и в нашей Галактике, например в виде двойных звезд, когда одна или обе зеркальные, представляются исключительно интересными для исследователей.

Необходимо обратить внимание на обнаружение нового типа галактик с очень большой долей скрытой массы. Их вращение, по данным радиоастрономических наблюдений, согласуется со структурой Галактики, состоящей из плоского диска, спиральных рукавов и сферического Гало, однако нормального звездного свечения не видно. Темная материя имеет необычно высокую плотность и в ядре галактики, где обычная звездная компонента все-таки видна.

Возможен ли обмен информацией с зеркальным миром? Если взаимодействие только гравитационное, то и обмен информацией может осуществляться с помощью измерения переменной величины тяжести. Простейший обмен информацией возможен при воздействии гравитирующих зеркальных масс на специальные приборы – гравиметры с близких расстояний. Со сколь угодно далеких расстояний информация может быть передана и принята с помощью гравитационных волн. Первые гравитационно-волновые телескопы должны быть запущены в эксплуатацию в ближайшие годы.

Современные представления о Вселенной базируются на инфляционных моделях, согласно которым мы живем в одном из расширяющихся «пузырьков», образующихся в кипящем и бесконечно существующем вакууме. К этим представлениям теоретики пришли, отталкиваясь от первоначального требования построить модель Вселенной, бесконечной во времени и пространстве и неизменной в среднем по времени.

Нам представляется весьма важным аксиоматически принимаемое предположение о существовании в Большой Вселенной цивилизаций любого уровня и любой длительности развития. Необходимо также отметить несколько направлений дальнейших исследований скрытого вещества, связанных с достаточно обоснованными предположениями о существовании зеркального вещества, топологических пространственных туннелей и больших искусственных конструкций как возможных составляющих скрытой массы:

  1. Развитие исследований планетных систем и поиск новых объектов в Галактике, учитывая возможность обнаружения гигантских искусственных конструкций как возможной доли скрытой массы.
  2. Исследования с целью поиска объектов, состоящих в основном из зеркального вещества. Большой интерес представляет исследование галактик с аномально большим отношением массы к светимости, поиск зеркальных звезд и планет, анализ сигналов телескопов гравитационных волн как возможных передач ВЦ.
  3. Развитие теории Вселенной со сложной топологией и туннелями; – поиск и исследование первичных черных дыр и объектов типа «черная дыра – белая дыра» с целью выявления топологических туннелей и астроинженерных конструкций около них[xi].

Главный Редактор

Здравствуйте! Если у Вас возникнут вопросы, напишите нам на почту help@allinweb.info

Похожие статьи

Leave a Reply

Your email address will not be published. Required fields are marked *